Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2133-2021
https://doi.org/10.5194/tc-15-2133-2021
Research article
 | 
02 May 2021
Research article |  | 02 May 2021

Soil infiltration characteristics and pore distribution under freezing–thawing conditions

Ruiqi Jiang, Tianxiao Li, Dong Liu, Qiang Fu, Renjie Hou, Qinglin Li, Song Cui, and Mo Li

Related authors

Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024,https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen ground hydrology
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023,https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022,https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Alexandra Hamm and Andrew Frampton
The Cryosphere, 15, 4853–4871, https://doi.org/10.5194/tc-15-4853-2021,https://doi.org/10.5194/tc-15-4853-2021, 2021
Short summary
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Invited perspective: What lies beneath a changing Arctic?
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021,https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary

Cited articles

Andersland, O. B., Wiggert, D. C., and Davies, S. H.: Hydraulic conductivity of frozen granular soils, J. Environ. Eng., 122, 212–216, https://doi.org/10.1061/(ASCE)0733-9372(1996)122:3(212), 1996. 
Angulo-Jaramillo, R., Vandervaere, J.-P., Roulier, S., Thony, J.-L., Gaudet, J.-P., and Vauclin, M.: Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments, Soil Till. Res., 55, 1–29, https://doi.org/10.1016/S0167-1987(00)00098-2, 2000. 
Ankeny, M. D., Ahmed, M., Kaspar, T. C., and Horton, R.: Simple field method for determining unsaturated hydraulic conductivity, Soil Sci. Soc. Am. J., 55, 467–470, https://doi.org/10.2136/sssaj1991.03615995005500020028x, 1991. 
Azmatch, T. F., Sego, D. C., Arenson, L. U., and Biggar, K. W.: Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils, Cold Reg. Sci. Technol., 83, 103–109, https://doi.org/10.1016/j.coldregions.2012.07.002, 2012. 
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013. 
Download
Short summary
This paper outlines the results from laboratory tests of soil freezing impacts on infiltration rates, hydraulic conductivity, and soil pore distribution characteristics. The results indicated that macropores (> 5 mm) accounted for < 1 % of the pore-volume-contributed half of the flow in unfrozen conditions and that the freezing of macropores resulted in considerable decreases in hydraulic conductivity. The results should be of interest for cold region hydrology in general.