Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil infiltration characteristics and pore distribution under freezing–thawing conditions
Ruiqi Jiang
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Tianxiao Li
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Dong Liu
CORRESPONDING AUTHOR
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Qiang Fu
CORRESPONDING AUTHOR
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Renjie Hou
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Qinglin Li
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Song Cui
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Mo Li
School of Water Conservancy & Civil Engineering, Northeast
Agricultural University, Harbin 150030, China
Key Laboratory of Effective Utilization of Agricultural Water
Resources of Ministry of Agriculture, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Heilongjiang Provincial Key Laboratory of Water Resources and Water
Conservancy Engineering in Cold Region, Northeast Agricultural University,
Harbin, Heilongjiang 150030, China
Data sets
Data for “Soil infiltration characteristics and pore distribution under freezing-thawing condition” .xlsx R. Jiang https://doi.org/10.6084/m9.figshare.12965123.v4
Short summary
This paper outlines the results from laboratory tests of soil freezing impacts on infiltration rates, hydraulic conductivity, and soil pore distribution characteristics. The results indicated that macropores (> 5 mm) accounted for < 1 % of the pore-volume-contributed half of the flow in unfrozen conditions and that the freezing of macropores resulted in considerable decreases in hydraulic conductivity. The results should be of interest for cold region hydrology in general.
This paper outlines the results from laboratory tests of soil freezing impacts on infiltration...