Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2057-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2057-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling
Dominik Amschwand
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland
now at: Department of Geosciences, University of Fribourg, 1700,
Fribourg, Switzerland
Susan Ivy-Ochs
Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland
Laboratory of Ion Beam Physics, ETH Zurich, 8093, Zurich, Switzerland
Marcel Frehner
Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland
Olivia Steinemann
Laboratory of Ion Beam Physics, ETH Zurich, 8093, Zurich, Switzerland
Marcus Christl
Laboratory of Ion Beam Physics, ETH Zurich, 8093, Zurich, Switzerland
Christof Vockenhuber
Laboratory of Ion Beam Physics, ETH Zurich, 8093, Zurich, Switzerland
Related authors
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-844, https://doi.org/10.5194/egusphere-2024-844, 2024
Short summary
Short summary
Meltwater from rock glaciers, landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) using below-ground heat flow measurements and observations of the rising and falling ground ice table. We found seasonal aggradation and melt of 150–300 mm w.e. or up to 30 % of the yearly precipitation. The ice, largely sourced from refreezing snowmelt, melts in dry summer periods but cannot increase the total yearly runoff.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-844, https://doi.org/10.5194/egusphere-2024-844, 2024
Short summary
Short summary
Meltwater from rock glaciers, landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) using below-ground heat flow measurements and observations of the rising and falling ground ice table. We found seasonal aggradation and melt of 150–300 mm w.e. or up to 30 % of the yearly precipitation. The ice, largely sourced from refreezing snowmelt, melts in dry summer periods but cannot increase the total yearly runoff.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Sandro Rossato, Susan Ivy-Ochs, Silvana Martin, Alfio Viganò, Christof Vockenhuber, Manuel Rigo, Giovanni Monegato, Marco De Zorzi, Nicola Surian, Paolo Campedel, and Paolo Mozzi
Nat. Hazards Earth Syst. Sci., 20, 2157–2174, https://doi.org/10.5194/nhess-20-2157-2020, https://doi.org/10.5194/nhess-20-2157-2020, 2020
Short summary
Short summary
Rock avalanches are extremely dangerous, causing much damage worldwide. The
Masiere di Vedanais a rock avalanche deposit (9 km2, 170 Mm3) in NE Italy. We dated it back to late Roman to early Middle Ages. Identified drivers are the overall structural setting, exceptional rainfall events and seismic shakings. No exceptional event is required as a trigger. When dealing with heavily deformed bedrocks, especially in inhabited areas, the occurrence of a huge event like this must be considered.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Cited articles
Alfimov, V. and Ivy-Ochs, S.: How well do we understand production of
36Cl in limestone and dolomite?, Quat. Geochronol., 4, 462–474,
https://doi.org/10.1016/j.quageo.2009.08.005, 2009.
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump,
S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier
– rock glacier continuum, Geomorphology, 311, 127–142, https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation
measurements and internal structure of some rock glaciers in Switzerland,
Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002.
Badino, F., Ravazzi, C., Vallè, F., Pini, R., Aceti, A., Brunetti, M.,
Champvillair, E., Maggi, V., Maspero, F., Perego, R., and Orombelli, G.:
8800 years of high-altitude vegetation and climate history at the Rutor
Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise
and glacier contraction, Quaternary Sci. Rev., 185, 41–68, https://doi.org/10.1016/j.quascirev.2018.01.022, 2018.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3,
174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Barsch, D.: Rockglaciers. Indicators for the Present and Former Geoecology
in High Mountain Environments, Springer series in physical environment vol.
16, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-80093-1, 1996.
Bini, A., Buoncristiani, J.-F., Couterrand, S., Ellwanger, D., Felber, M.,
Florineth, D., Graf, H., Keller, O., Kelly, M., Schlüchter, C., and
Schoeneich, P.: Die Schweiz während des letzteiszeitlichen Maximums
(LGM) 1:500 000, Bundesamt für Landestopographie (swisstopo), Wabern,
available at: https://opendata.swiss/en/dataset/die-schweiz-wahrend-des-letzteiszeitlichen-maximums-lgm-1-500000 (last access: 22 April 2021),
2009.
Biot, M. A.: Theory of folding of stratified viscoelastic media and its
implications in tectonics and orogenesis, GSA Bulletin, 72, 1595–1620,
https://doi.org/10.1130/0016-7606(1961)72[1595:TOFOSV]2.0.CO;2,
1961.
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Le Roux, O., Lorier, L.,
Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the
Bérard rock glacier (southern French Alps), Permafrost Periglac., 28,
209–223, https://doi.org/10.1002/ppp.1887, 2016.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012.
Bohleber, P., Schwikowski, M., Stocker-Waldhuber, M., Fang, L., and Fischer,
A.: New glacier evidence for ice-free summits during the life of the
Tyrolean Iceman, Sci. Rep.-UK, 10, 20513, https://doi.org/10.1038/s41598-020-77518-9, 2020.
Böhlert, R., Compeer, M., Egli, M., Brandová, D., Maisch, M., W
Kubik, P., and Haeberli, W.: A combination of relative-numerical dating
methods indicates two high Alpine rock glacier activity phases after the
glacier advance of the Younger Dryas, The Open Geography Journal, 4,
115–130, https://doi.org/10.2174/1874923201003010115, 2011a.
Böhlert, R., Egli, M., Maisch, M., Brandová, D., Ivy-Ochs, S.,
Kubik, P. W., and Haeberli, W.: Application of a combination of dating
techniques to reconstruct the Lateglacial and early Holocene landscape
history of the Albula region (eastern Switzerland), Geomorphology, 127,
1–13, https://doi.org/10.1016/j.geomorph.2010.10.034, 2011b.
Buchli, T., Merz, K., Zhou, X., Kinzelbach, W., and Springman, S. M.:
Characterization and monitoring of the Furggwanghorn rock glacier, Turtmann
Valley, Switzerland: Results from 2010 to 2012, Vadose Zone J., 12, 1–15,
https://doi.org/10.2136/vzj2012.0067, 2013.
Chandler, B. M. P., Lovell, H., Boston C. M., Lukas, S., Barr, I. D.,
Benediktsson, I. Ö., Benn, D. I., Clark, C. D., Darvill, C. M., Evans,
D. J. A., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts,
D. H., Stokes, C. R., Storrar, R. D., and Stroeven, A. P.: Glacial
geomorphological mapping: A review of approaches and frameworks for best
practice, Earth-Sci. Rev., 185, 806–846, https://doi.org/10.1016/j.earscirev.2018.07.015, 2018.
Christl, M., Vockenhuber, C., Kubik, P., Wacker, L., Lachner, J., Alfimov,
V., and Synal, H.-A.: The ETH Zurich AMS facilities: Performance parameters
and reference materials, Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms, 294, 29–38,
https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett., 528, 115844,
https://doi.org/10.1016/j.epsl.2019.115844, 2019.
Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L., and
Vieli, A.: A general theory of rock glacier creep based on in-situ and
remote sensing observations, Permafrost Periglac., 32, 139–153, https://doi.org/10.1002/ppp.2090, 2021.
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., and Kubik,
P. W.: The Chironico landslide (Valle Leventina, southern Swiss Alps): Age
and evolution, Swiss J. Geosci., 107, 273–291, https://doi.org/10.1007/s00015-014-0170-z, 2014.
Colucci, R. R., Forte, E., Žebre, M., Maset, E., Zanettini, C., and
Guglielmin, M.: Is that a relict rock glacier?, Geomorphology, 330,
177–189, https://doi.org/10.1016/j.geomorph.2019.02.002, 2019.
Cornelius, H. P.: Geologische Karte der Err-Julier-Gruppe 1:25 000, 2
Blätter, Beitr. Geol. Karte Schweiz, Spezialkarte Nr. 115 A (Westblatt),
1932.
Crump, S. E., Anderson, L. S., Miller, G. H., and Anderson, R. S.:
Interpreting exposure ages from ice-cored moraines: a Neoglacial case study
on Baffin Island, Arctic Canada, J. Quaternary. Sci., 32, 1049–1062,
https://doi.org/10.1002/jqs.2979, 2017.
Debella-Gilo, M. and Kääb, A.: Locally adaptive template sizes for
matching repeat images of Earth surface mass movements, ISPRS J. Photogramm.,
69, 10–28, https://doi.org/10.1016/j.isprsjprs.2012.02.002,
2012.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010.
Delaloye, R., Barboux, C., Bodin, X., Brenning, A., Hartl, L., Hu, Y.,
Ikeda, A., Kaufmann, V., Kellerer-Pirklbauer, A., Lambiel, C., Liu, L.,
Marcer, M., Rick, B., Scotti, R., Takadema, H., Trombotto Liaudat, D.,
Vivero, S., and Winterberger, M.: Rock glacier inventories and kinematics: A
new IPA Action Group, in: Proceedings of the 5th European Conference on
Permafrost, Chamonix-Mont Blanc, France, 23 June–1 July 2018, 392–393,
2018.
Deline, P. and Orombelli, G.: Glacier fluctuations in the western Alps
during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont
Blanc massif, Italy), Boreas, 34, 456–467, https://doi.org/10.1111/j.1502-3885.2005.tb01444.x, 2005.
Denn, A. R., Bierman, P. R., Zimmerman, S. R. H., Caffee, M. W., Corbett, L. B., and Kirby, E.: Cosmogenic nuclides indicate that boulder fields are dynamic, ancient, multigenerational features, GSA Today, 28, 4–10, https://doi.org/10.1130/GSATG340A.1, 2017.
Dufour, G.-H.: Topographische Karte der Schweiz, Blatt XV: Davos,
Martinsbruck, Eidgenössische Landestopographie, Bern, 1853.
Fernández-Fernández, J. M., Palacios, D., Andrés, N.,
Schimmelpfennig, I., Tanarro, L. M., Brynjólfsson, S.,
López-Acevedo, F. J., Þorsteinn Sæmundsson, and A.S.T.E.R. Team:
Constraints on the timing of debris-covered and rock glaciers: An
exploratory case study in the Hólar area, northern Iceland,
Geomorphology, 361, 107196, https://doi.org/10.1016/j.geomorph.2020.107196, 2020.
Fitch, A. J., Kadyrov, A., Christmas, W. J., and Kittler, J.: Orientation
correlation, in: Proceedings of the 13th British Machine Vision Conference,
Cardiff, United Kingdom, 2–5 September 2002, 133–142, available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.5662 (last access: 22 April 2021), 2002.
Frauenfelder, R. and Kääb, A.: Towards a palaeoclimatic model of
rock-glacier formation in the Swiss Alps, Ann. Glaciol., 31, 281–286,
https://doi.org/10.3189/172756400781820264, 2000.
Frauenfelder, R., Haeberli,W., Hoelzle, M., and Maisch, M.: Using relict
rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost
distribution patterns in the Err-Julier area, Swiss Alps, Norsk Geogr.
Tidsskr., 55, 195–202, https://doi.org/10.1080/00291950152746522, 2001.
Frauenfelder, R., Laustela, M., and Kääb, A.: Relative age dating of
Alpine rockglacier surfaces, Z. Geomorphol., NF, 49, 145–166, 2005.
Frehner, M., Ling, A. H. M., and Gärtner-Roer, I.: Furrow-and-ridge
morphology on rockglaciers explained by gravity-driven buckle folding: A
case study from the Murtèl rockglacier (Switzerland), Permafrost
Periglac., 26, 57–66, https://doi.org/10.1002/ppp.1831, 2015.
Giardino, J. R. and Vitek, J. D.: The significance of rock glaciers in the
glacial-periglacial landscape continuum, J. Quaternary Sci., 3, 97– 03,
https://doi.org/10.1002/jqs.3390030111, 1988.
Gruber, S., Haeberli, W., Krummenacher, B., Keller, F., Mani, P., Hunziker,
G., Hölzle, M., Vonder Mühll, D., Zimmermann, M., Keusen, H.-R.,
Götz, A., and Raetzo, H.: Erläuterungen zur Hinweiskarte der
potentiellen Permafrostverbreitung in der Schweiz 1:50 000 (potential
permafrost distribution map, PPDM), Bundesamt für Umwelt (BAFU), Bern,
2006.
Haeberli, W., Hoelzle, M., Kääb, A., Keller, F., Vonder Mühll,
D., and Wagner, S.: Ten years after drilling through the permafrost of the
active rock glacier Murtèl, Eastern Swiss Alps: Answered questions and
new perspectives, in: Proceedings of the 7th International Conference on
Permafrost, Yellowknife, Northwest Territories, Canada, 23–27 June 1998,
403–410, 1998.
Haeberli, W., Brandova, D., Burga, C., Egli, M., Frauenfelder, R.,
Kääb, A., Maisch, M., Mauz, B., and Dikau, R.: Methods for absolute
and relative age dating of rock-glacier surfaces in Alpine permafrost, in:
Proceedings of the 8th International Conference on Permafrost, Zürich,
Switzerland, 21–25 July 2003, vol. 1, 343–348, 2003.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S.,
and Vonder Mühll, D.: Permafrost creep and rock glacier dynamics,
Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to
landslides from degrading permafrost into new lakes in deglaciating mountain
ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.
Hanson, S. and Hoelzle, M.: The thermal regime of the active layer at the
Murtèl rock glacier based on data from 2002, Permafrost Periglac., 15,
273–282, https://doi.org/10.1002/ppp.499, 2004.
Harris, S. A. and Pedersen, D. E.: Thermal regimes beneath coarse blocky
materials, Permafrost Periglac., 9, 107–120, https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2<107::AID-PPP277>3.0.CO;2-G, 1998.
Heyman, J., Stroeven, A. P., Harbor, J. M., and Caffee, M. W.: Too young or
too old: Evaluating cosmogenic exposure dating based on an analysis of
compiled boulder exposure ages, Earth Planet. Sc. Lett., 302, 71–80,
https://doi.org/10.1016/j.epsl.2010.11.040, 2011.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A.,
Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High mountain areas, in:
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D.C.,
Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegriìa, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland,
131–202, 2019.
Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-level
variations in west-central Europe over the last 3500 years, Holocene,
15, 789–801, https://doi.org/10.1191/0959683605hl853ra, 2005.
Humlum, O.: The climatic significance of rock glaciers, Permafrost Periglac,
9, 375–395, https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<375::AID-PPP301>3.0.CO;2-0, 1998.
Ivy-Ochs, S.: Glacier variations in the European Alps at the end of the last
glaciation, Cuadernos de Investigación Geográfica, 41, 295–315,
https://doi.org/10.18172/cig.2750, 2015.
Ivy-Ochs, S. and Kober, F.: Surface exposure dating with cosmogenic
nuclides, Quaternary Sci. J., 57, 179–209, 2008.
Ivy-Ochs, S., Synal, H.-A., Roth, C., and Schaller, M.: Initial results from
isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS
facility, Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 223–224, 623–627, https://doi.org/10.1016/j.nimb.2004.04.115, 2004.
Ivy-Ochs, S., Kerschner, H., and Schlüchter, C.: Cosmogenic nuclides and
the dating of Lateglacial and Early Holocene glacier variations: the Alpine
perspective, Quatern. Int., 164, 53–63, https://doi.org/10.1016/j.quaint.2006.12.008, 2007.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quaternary Sci. Rev., 28, 2137–2149, https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Joerin, U. E., Stocker, T. F., and Schlüchter, C.: Multicentury glacier
fluctuations in the Swiss Alps during the Holocene, Holocene, 16,
697–704, https://doi.org/10.1191/0959683606hl964rp, 2006.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kääb, A. and Reichmuth, T.: Advance mechanisms of rock glaciers,
Permafrost Periglac., 16, 187–193, https://doi.org/10.1002/ppp.507, 2005.
Kääb, A., Haeberli, W., and Gudmundsson, G. H.: Analysing the creep
of mountain permafrost using high precision aerial photogrammetry: 25 years
of monitoring Gruben rock glacier, Swiss Alps, Permafrost Periglac., 8,
409–426, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C, 1997.
Kaufman, D., McKay, N., Routson, C., Erb, E., Dätwyler, C., Sommer, P.
S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a
multi-method reconstruction approach, Sci. Data, 7, 201, https://doi.org/10.1038/s41597-020-0530-7, 2020.
Kellerer-Pirklbauer, A.: Long-term monitoring of sporadic permafrost at the
eastern margin of the European Alps (Hochreichart, Seckauer Tauern range,
Austria), Permafrost Periglac., 30, 260–277, https://doi.org/10.1002/ppp.2021, 2019.
Kenner, R.: Geomorphological analysis on the interaction of Alpine glaciers
and rock glaciers since the Little Ice Age, Land Degrad. Dev., 30, 580–591,
https://doi.org/10.1002/ldr.3238, 2018.
Kenner, R. and Magnusson, J.: Estimating the effect of different influencing
factors on rock glacier development in two regions in the Swiss Alps,
Permafrost Periglac., 28, 195–208, https://doi.org/10.1002/ppp.1910, 2017.
Kenner, R., Bühler, Y., Delaloye, R., Ginzler, C., and Phillips, M.:
Monitoring of high Alpine mass movements combining laser scanning with
digital airborne photogrammetry, Geomorphology, 206, 492–504, https://doi.org/10.1016/j.geomorph.2013.10.020, 2014.
Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., and Phillips, M.: Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps, The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, 2019.
Kerschner, H. and Ivy-Ochs, S.: Palaeoclimate from glaciers: Examples from
the Eastern Alps during the Alpine Lateglacial and early Holocene, Global
Planet. Change, 60, 58–71, https://doi.org/10.1016/j.gloplacha.2006.07.034, 2008.
Kirkbride, M. and Brazier, V.: On the sensitivity of Holocene talus-derived
rock glaciers to climate change in the Ben Ohau Range, New Zealand, J.
Quaternary Sci., 10, 353–365, https://doi.org/10.1002/jqs.3390100405, 1995.
Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, https://doi.org/10.1016/j.geomorph.2018.09.020, 2019.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83,
324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Kronig, O., Ivy-Ochs, S., Hajdas, I., Christl, M., Wirsig, C., and
Schlüchter, C.: Holocene evolution of the Triftje- and the
Oberseegletscher (Swiss Alps) constrained with 10Be exposure and
radiocarbon dating, Swiss J. Geosci., 111, 117–131, https://doi.org/10.1007/s00015-017-0288-x, 2018.
Kutschera, W., Patzelt, G., Steier, P., and Wild, E.: The Tyrolean Iceman
and his glacial environment during the Holocene, Radiocarbon, 59, 395–405,
https://doi.org/10.1017/RDC.2016.70, 2017.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lambiel, C. and Delaloye, R.: Contribution of real-time kinematic GPS in the
study of creeping mountain permafrost: examples from the Western Swiss Alps,
Permafrost Periglac., 15, 229–241, https://doi.org/10.1002/ppp.496, 2004.
Laustela, M., Egli, M., Frauenfelder, R., Kääb, A., Maisch, M., and
Haeberli, W.: Weathering rind measurements and relative age dating of
rockglacier surfaces in crystalline regions of the Eastern Swiss Alps, in:
Proceedings of the 8th International Conference on Permafrost, Zürich,
Switzerland, 21–25 July 2003, 627–632, 2003.
Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J.-L.,
Miramont, C., and Arnaud, F.: Calendar-dated glacier variations in the
western European Alps during the Neoglacial: the Mer de Glace record, Mont
Blanc massif, Quaternary Sci. Rev., 108, 1–22, https://doi.org/10.1016/j.quascirev.2014.10.033, 2015.
Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., and Schoeneich, P.: Evaluating the destabilization susceptibility of active rock glaciers in the French Alps, The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, 2019.
Messerli, A. and Grinsted, A.: Image georectification and feature tracking toolbox: ImGRAFT, Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, 2015.
Mohadjer, S., Ehlers, T. A., Nettesheim, M., Ott, M. B., Glotzbach, C., and
Drews, R.: Temporal variations in rockfall and rock-wall retreat rates in a
deglaciated valley over the past 11 k.y., Geology, 48, 594–598, https://doi.org/10.1130/G47092.1, 2020.
Moore, P. L.: Deformation of debris-ice mixtures, Rev. Geophys., 52, 435–467,
https://doi.org/10.1002/2014RG000453, 2014.
Moran, A. P., Ivy-Ochs, S., Vockenhuber, C., and Kerschner, H.: Rock glacier
development in the Northern Calcareous Alps at the Pleistocene-Holocene
boundary, Geomorphology, 273, 178–188, https://doi.org/10.1016/j.geomorph.2016.08.017, 2016.
Müller, J., Vieli, A., and Gärtner-Roer, I.: Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling, The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, 2016.
Nicolussi, K., Kaufmann, M., Patzelt, G., Thurner, A., van der Plicht, J.,
and Thurner, A.: Holocene tree-line variability in the Kauner Valley,
Central Eastern Alps, indicated by dendrochronological analysis of living
trees and subfossil logs, Veg. Hist. Archaeobot., 14, 221–234, https://doi.org/10.1007/s00334-005-0013-y, 2005.
Noetzli, J., Pellet, C., and Staub, B. (Eds.): PERMOS 2019. Permafrost in
Switzerland 2014/2015 to 2017/2018., Glaciological Report (Permafrost) No.
16–19 of the Cryospheric Commission of the Swiss Academy of Sciences, 104
pp., https://doi.org/10.13093/permos-rep-2019-16-19, 2019.
Nye, J. F.: A comparison between the theoretical and the measured long
profile of the Unteraar Glacier, J. Glaciol., 12, 103–107, https://doi.org/10.3189/S0022143000034006, 1952.
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.:
Assessing the rock glacier kinematics on three different timescales: A case
study from the southern Swiss Alps, Earth Surf. Proc. Land., 39, 2056–2069,
https://doi.org/10.1002/esp.3599, 2014.
Schimmelpfennig, I., Schaefer, J. M., Akçar, N., Koffman, T., Ivy-Ochs,
S., Schwartz, R., Finkel, R. C., Zimmerman, S., and Schlüchter, C.: A
chronology of Holocene and Little Ice Age glacier culminations of the
Steingletscher, Central Alps, Switzerland, based on high sensitivity
beryllium-10 moraine dating, Earth Planet Sc. Lett., 393, 220–230, https://doi.org/10.1016/j.epsl.2014.02.046, 2014.
Schlosser, O.: Geomorphologische Kartierung und glazialmorphologische
Untersuchungen in der Err-Gruppe (Oberhalbstein, Kt. Graubünden),
unpublished diploma thesis, Dept. of Geography, University of Zurich, Zurich, 90
pp., 1990.
Schneider, S., Hoelzle, M., and Hauck, C.: Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps, The Cryosphere, 6, 517–531, https://doi.org/10.5194/tc-6-517-2012, 2012.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Scotti, R., Crosta, G. B., and Villa, A.: Destabilisation of creeping
permafrost: The Plator rock glacier case study (central Italian Alps),
Permafrost Periglac., 28, 224–236, https://doi.org/10.1002/ppp.1917, 2017.
Shewchuk, J. R.: Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator, Springer, Berlin, Heidelberg, 203–222,
https://doi.org/10.1007/BFb0014497, 1996.
Siegfried, H.: Topographischer Atlas der Schweiz 1:25 000/1:50 000, Blatt
426: Savognin, Eidgenössische Landesopographie, Bern, 1887.
Singeisen, C., Ivy-Ochs, S., Wolter, A., Steinemann, O., Akçar, N.,
Yesilyurt, S., and Vockenhuber, C.: The Kandersteg rock avalanche
(Switzerland): Integrated analysis of a late Holocene catastrophic event,
Landslides, 17, 1297–1317, https://doi.org/10.1007/s10346-020-01365-y, 2020.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34,
https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D.
S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi,
K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier
fluctuations during the past 2000 years, Quaternary Sci. Rev., 149, 61–90,
https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
Springman, S. M., Arenson, L. U., Yamamoto, Y., Maurer, H., Kos, A., Buchli,
T., and Derungs, G.: Multidisciplinary investigations on three rock glaciers
in the Swiss Alps: Legacies and future perspectives, Geogr. Ann. A, 94,
215–243, https://doi.org/10.1111/j.1468-0459.2012.00464.x,
2012.
Steinemann, O., Reitner, J. M., Ivy-Ochs, S., Christl, M., and Synal, H.-A.:
Tracking rockglacier activity in the Eastern Alps from the Lateglacial to
the early Holocene, Quaternary Sci. Rev., 241, https://doi.org/10.1016/j.quascirev.2020.106424, 2020.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Synal, H.-A., Bonani, G., Döbeli, M., Ender, R., Gartenmann, P., Kubik,
P., Schnabel, C., and Suter, M.: Status report of the PSI/ETH AMS facility,
Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 123, 62–68, https://doi.org/10.1016/S0168-583X(96)00608-8, 1997.
Ulrich, V., Williams, J. G., Zahs, V., Anders, K., Hecht, S., and Höfle, B.: Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds, Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, 2021.
Vockenhuber, C., Miltenberger, K.-U., and Synal, H.-A.: 36Cl
measurements with a gas-filled magnet at 6 MV, Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms, 455, 190–194, https://doi.org/10.1016/j.nimb.2018.12.046, 2019.
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017.
Winkler, S. and Lambiel, C.: Age constraints of rock glaciers in the
Southern Alps/New Zealand – Exploring their palaeoclimatic potential,
Holocene, 28, 778–790, https://doi.org/10.1177/0959683618756802, 2018.
Wipf, A.: Gletschergeschichtliche Untersuchungen im spät- und postglazialen Bereich des Hinteren Lauterbrunnentals (Berner Oberland, Schweiz), Geogr. Helv., 56, 133–144, https://doi.org/10.5194/gh-56-133-2001, 2001.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Zasadni, J.: The Little Ice Age in the Alps: Its record in glacial deposits
and rock glacier formation, Studia Geomorphologica Carpatho-Balcanica, 41,
117–137, 2007.
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by...