Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1567-2021
https://doi.org/10.5194/tc-15-1567-2021
Research article
 | 
29 Mar 2021
Research article |  | 29 Mar 2021

Using avalanche problems to examine the effect of large-scale atmosphere–ocean oscillations on avalanche hazard in western Canada

Pascal Haegeli, Bret Shandro, and Patrick Mair

Related authors

Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147,https://doi.org/10.5194/nhess-2024-147, 2024
Preprint under review for NHESS
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1609,https://doi.org/10.5194/egusphere-2024-1609, 2024
Short summary
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871,https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024,https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Natural Hazards
Impact of climate change on snow avalanche activity in the Swiss Alps
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024,https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024,https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Snow mechanical property variability at the slope scale – implication for snow mechanical modelling
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024,https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Combining modelled snowpack stability with machine learning to predict avalanche activity
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023,https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Can Saharan dust deposition impact snowpack stability in the French Alps?
Oscar Dick, Léo Viallon-Galinier, François Tuzet, Pascal Hagenmuller, Mathieu Fructus, Benjamin Reuter, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023,https://doi.org/10.5194/tc-17-1755-2023, 2023
Short summary

Cited articles

Atkins, R.: An avalanche characterization checklist for backcountry travel decisions, in: Proceedings of 2004 International Snow Science Workshop, Jackson Hole, Wyoming, USA, 462–468, available at: http://arc.lib.montana.edu/snow-science/item/1118 (last access: 24 March 2021), 19–24 September 2004. 
Bellaire, S., Jamieson, J. B., Thumlert, S., Goodrich, J., and Statham, G.: Analysis of long-term weather, snow and avalanche data at Glacier National Park, B. C., Canada, Cold Reg. Sci. Technol., 121, 118–125, https://doi.org/10.1016/j.coldregions.2015.10.010, 2016. 
Bjerknes, J.: Atlantic Air-Sea Interaction, Adv. Geophys., 10, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9, 1964. 
Bonsal, B. R., Shabbar, A., and Higuchi, K.: Impacts of low frequency variability modes on Canadian winter temperature, Int. J. Climatol., 21, 95–108, https://doi.org/10.1002/joc.590, 2001. 
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Niels, A., Skaug, H. J., Mächler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling, R J., 9, 378–400, https://doi.org/10.32614/RJ-2017-066, 2017. 
Download
Short summary
Numerous large-scale atmosphere–ocean oscillations including the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the Pacific North American Teleconnection Pattern, and the Arctic Oscillation are known to substantially affect winter weather patterns in western Canada. Using avalanche problem information from public avalanche bulletins, this study presents a new approach for examining the effect of these atmospheric oscillations on the nature of avalanche hazard in western Canada.