Articles | Volume 14, issue 12
https://doi.org/10.5194/tc-14-4627-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4627-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modelling of permafrost spring discharge and open-system pingo formation induced by basal permafrost aggradation
Department of Arctic Geology, The University Centre in Svalbard
(UNIS), 9171 Longyearbyen, Norway
Department of Geosciences and Natural Resource Management, University
of Copenhagen, 1350 Copenhagen K, Denmark
Center for Permafrost, University of Copenhagen, 1350 Copenhagen K, Denmark
Andrew Jonathan Hodson
Department of Arctic Geology, The University Centre in Svalbard
(UNIS), 9171 Longyearbyen, Norway
Department of Environmental Sciences, Western Norway University of
Applied Sciences, 6856 Sogndal, Norway
Søren Jessen
Department of Geosciences and Natural Resource Management, University
of Copenhagen, 1350 Copenhagen K, Denmark
Victor Bense
Department of Environmental Sciences, Wageningen University, 6708PB
Wageningen, the Netherlands
Kim Senger
Department of Arctic Geology, The University Centre in Svalbard
(UNIS), 9171 Longyearbyen, Norway
Related authors
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Short summary
In this paper, we investigate the impact of climatic and anthropogenic factors on future groundwater availability. The changes are simulated using hydrological and groundwater flow models. We find that future groundwater status is influenced more by anthropogenic factors than climatic factors. The results are beneficial for informing responsible parties in operational water management about achieving future (ground)water governance.
Gabrielle Emma Kleber, Leonard Magerl, Alexandra V. Turchyn, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1273, https://doi.org/10.5194/egusphere-2024-1273, 2024
Short summary
Short summary
Our research on Svalbard has uncovered that melting glaciers can release large amounts of methane, a potent greenhouse gas. By studying a glacier over two summers, we found that its river was highly concentrated in methane. This suggests that as the Arctic warms and glaciers melt, they could be a significant source of methane emissions. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as similar processes may occur across the Arctic.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Catharina Simone Nisbeth, Federica Tamburini, Jacob Kidmose, Søren Jessen, and David William O'Connell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-469, https://doi.org/10.5194/hess-2019-469, 2019
Preprint withdrawn
Short summary
Short summary
Phosphorus contamination frequently causes eutrophication of freshwater lakes. However it is often difficult to establish the origin of the contaminating phosphorus. This study aims to contribute to the development and improvement of a method for tracing phosphorus in the freshwater environment, by using the oxygen-18 isotope of orthophosphate (δ18Op). The use of a coherent and common method across research groups may enable phosphorus tracing and better management of freshwater ecosystems.
T. Read, V. F. Bense, R. Hochreutener, O. Bour, T. Le Borgne, N. Lavenant, and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 197–202, https://doi.org/10.5194/gi-4-197-2015, https://doi.org/10.5194/gi-4-197-2015, 2015
Short summary
Short summary
The monitoring and measurement of water flow in groundwater wells allows us to understand how aquifers transmit water. In this paper we develop a simple method, which we call T-POT, that allows flows to be estimated by tracking the movement of a small parcel of warmed water. The parcel is tracked using fibre optic temperature sensing - a technology that allows detailed measurements of temperature, and therefore flow using the T-POT method, to be made in the well.
Related subject area
Discipline: Other | Subject: Frozen ground hydrology
Brief communication: The hidden labyrinth: deep groundwater in Wright Valley, Antarctica
Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022, https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys of Antarctica, a deep groundwater system has been hypothesized to connect Don Juan Pond and Lake Vanda, both surface waterbodies that contain very high concentrations of salt. This is unusual, since permafrost in polar landscapes is thought to prevent subsurface hydrologic connectivity. We show results from an airborne geophysical survey that reveals widespread unfrozen brine in Wright Valley and points to the potential for deep valley-wide brine conduits.
Olga Makarieva, Nataliia Nesterova, David Andrew Post, Artem Sherstyukov, and Lyudmila Lebedeva
The Cryosphere, 13, 1635–1659, https://doi.org/10.5194/tc-13-1635-2019, https://doi.org/10.5194/tc-13-1635-2019, 2019
Short summary
Short summary
The streamflow of Arctic rivers is changing. We analyzed available data (22 gauges, 1936–2015) in the basins of the Yana and Indigirka rivers completely located within the continuous permafrost zone. The results show that the main factor of increasing low flows is the shift from snow to rain due to warming. Other factors related to the release of water from permafrost, glaciers, or aufeis may fractionally contribute to streamflow increase but cannot be quantified based on available data.
Cited articles
Åhman, R.: Studier av pingoer i Adventdalen och Reindalen på
Spetsbergen, Lunds Univ. Naturgeografiska Institution, Rapp. och Not., 15,
27–44, 1973.
Aitken, A. E. and Gilbert, R.: Holocene Nearshore Environments and Sea-Level
History in Pangnirtung Fiord, Baffin Island, N.W.T., Canada, Arctic Alppine
Res., 21, 34–44, 1989.
Andersen, D. T., Pollard, W. H., McKay, C. P., and Heldmann, J.: Cold springs
in permafrost on Earth and Mars, J. Geophys. Res.-Planets, 107, 5015,
https://doi.org/10.1029/2000je001436, 2002.
AQUAVEO™: Groundwater Modeling System 10.4.4, available at:
https://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction, last access: 1 December 2019.
Bælum, K., Johansen, T. A., Johnsen, H., Rød, K., Ruud, B. O., and
Braathen, A.: Subsurface structures of the Longyearbyen CO2 Lab study area in Central Spitsbergen (Arctic Norway) as mapped by reflection seismic data, Nor. Geol. Tidsskr., 92, 377–389, 2012.
Bahr, J. M., Moline, G. R., and Nadon, G. C.: Anomalous Pressures in the Deep
Michigan Basin, AAPG Memoir., 61, 153–165, 1994.
Ballantyne, C. K.: Periglacial geomorphology, 1st edn., John Wiley and Sons, West Sussex, UK, 2018.
Bell, T.: The last glaciation and sea level history of Fosheim Peninsula,
Ellesmere Island, Canadian High Arctic, Can. J. Earth Sci., 33,
1075–1086, https://doi.org/10.1139/e96-082, 1996.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, 2nd ed., Hodder
Education, London, UK, 2010.
Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost degradation as
a control on hydrogeological regime shifts in a warming climate, J. Geophys.
Res.-Earth, 117, 1–18, https://doi.org/10.1029/2011JF002143, 2012.
Bergman, T. L., Lavine, A. S., Incropera, F. P., and Dewitt, D. P.:
Fundamentals of Heat and Mass Transfer, 7th edn., John Wiley and Sons, West Sussex, UK,
2011.
Betlem, P., Senger, K., and Hodson, A.: 3D thermobaric modelling of the gas
hydrate stability zone onshore central Spitsbergen, Arctic Norway, Mar. Pet.
Geol., 100, 246–262, https://doi.org/10.1016/j.marpetgeo.2018.10.050,
2019.
Birchall, T., Senger, K., Hornum, M. T., Olaussen, S., and Braathen, A.:
Underpressure of the Northern Barents Shelf: distribution, causes and
implications on the petroleum, Pre-proof, Am. Assoc. Pet. Geol. Bull., 104, 2267–2295,
https://doi.org/10.1306/02272019146, 2020.
Bonacina, C. and Comini, G.: On the solution of the nonlinear heat
conduction equations by numerical methods, Int. J. Heat Mass Transf., 16,
581–589, https://doi.org/10.1016/0017-9310(73)90225-1, 1973.
Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O.,
Elvebakk, H., Hansen, F., Hanssen, T. H., Jochmann, M., Johansen, T. A.,
Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mørk, A., Mørk, M. B.,
Nemec, W., Olaussen, S., Oye, V., Rød, K., Titlestad, G. O., Tveranger,
J., and Vagle, K.: The Longyearbyen CO2 Lab of Svalbard, Norway – Initial
Assessment of the Geological Conditions for CO2 Sequestration, Nor. Geol.
Tidsskr., 92, 353–376, 2012.
Burland, J. B.: On the compressibility and shear strength of natural clays, Géotecnique, 40, 329–378, 1990.
Burr, D. M., Tanaka, K. L., and Yoshikawa, K.: Pingos on Earth and Mars,
Planet. Space Sci., 57, 541–555, https://doi.org/10.1016/j.pss.2008.11.003, 2009.
Burt, T. P. and Williams, P. J.: Hydraulic conductivity in frozen soils,
Earth Surf. Process., 1, 349–360, https://doi.org/10.1002/esp.3290010404, 1976.
Cable, S., Elberling, B., and Kroon, A.: Holocene permafrost history and
cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard,
Boreas, 47, 423–442, https://doi.org/10.1111/bor.12286, 2018.
Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids, 2nd ed.,
Clarendon Press, London, UK, 1959.
Christiansen, H. H., French, H. M., and Humlum, O.: Permafrost in the Gruve-7
mine, Adventdalen, Svalbard, Nor. Geogr. Tidsskr., 59, 109–115,
https://doi.org/10.1080/00291950510020592, 2005.
Demidov, N., Wetterich, S., Verkulich, S., Ekaykin, A., Meyer, H., Anisimov, M., Schirrmeister, L., Demidov, V., and Hodson, A. J.: Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen, The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, 2019.
Domenico, P. A. and Mifflin, M. D.: Water from low-permeability sediments
and land subsidence, Water Resour. Res., 1, 563–576,
https://doi.org/10.1029/WR001i004p00563, 1965.
Domenico, P. A. and Schwartz, F. W.: Physical and chemical hydrogeology,
John Wiley and Sons, New York, NY, USA, 1998.
Dyke, A. S., England, J., Reimnitz, E., and Jette, H.: Changes in driftwood
delivery to the Canadian Arctic Archipelago, Arctic, 50, 1–16, 1997.
Elverhøi, A., Svendsen, J. I., Solheim, A., Andersen, E. S., Milliman,
J., Mangerud, J., and Hooke, R. L.: Late Quaternary Sediment Yield from the
High Arctic Svalbard Area, J. Geol., 103, 1–17, https://doi.org/10.1086/629718,
1995.
Eppelbaum, L., Kutasov, I., and Pilchin, A.: Paleoclimate and Present Climate Warming Trends, in: Applied Geothermics, Lecture Notes in Earth System Sciences, 655–693, Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-34023-9_11, 2014.
Farnsworth, W. R., Ingólfsson, Ó., Alexanderson, H., Allaart, L.,
Forwick, M., Noormets, R., Retelle, M., and Schomacker, A.: Holocene glacial
history of Svalbard: Status, perspectives and challenges, Earth-Sci.
Rev., 208, 103249, https://doi.org/10.1016/j.earscirev.2020.103249, 2020.
Fitts, C. R.: Groundwater Science, 1st edn., Academic Press, London, UK, 2002.
Førland, E. J., Hanssen-Bauer, I., and Nordli, Ø.: Climate statistics
and longterm series of temperature and precipitation at Svalbard and Jan
Mayen, DNMI Nor. Meteorol. Inst. Rep. 21, Norwegian Meteorological Institute, Oslo, Norway, 72, 1997.
Forman, S. L.: Post-glacial relative sea-level history of northwestern
Spitsbergen, Svalbard, Geol. Soc. Am. Bull., 102, 1580–1590,
https://doi.org/10.1130/0016-7606(1990)102<1580:PGRSLH>2.3.CO;2,
1990.
Forwick, M. and Vorren, T. O.: Stratigraphy and deglaciation of the
Isfjorden area, Spitsbergen, Nor. Geol. Tidsskr., 90, 163–179, 2011.
French, H. M.: The Periglacial Environment, 4th ed., John Wiley and Sons, West Sussex, UK, 2017.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard, N.
J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J.,
and Willerslev, E.: A 10,000-Year Record of Arctic Ocean Sea-Ice Variability – View from the Beach, Science, 333, 747–750,
https://doi.org/10.1126/science.1202760, 2011.
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H.,
and Buylaert, J. P.: Late Quaternary sedimentation and permafrost
development in a Svalbard fjord-valley, Norwegian high Arctic,
Sedimentology, 65, 2531–2558, https://doi.org/10.1111/sed.12476, 2018.
Giménez-Forcada, E.: Dynamic of sea water interface using hydrochemical
facies evolution diagram, Ground Water, 48, 212–216,
https://doi.org/10.1111/j.1745-6584.2009.00649.x, 2010.
Govaerts, J., Beerten, K., and ten Veen, J.: Weichselian permafrost depth in the Netherlands: a comprehensive uncertainty and sensitivity analysis, The Cryosphere, 10, 2907–2922, https://doi.org/10.5194/tc-10-2907-2016, 2016.
Grasby, S. E., Beauchamp, B., and Bense, V.: Sulfuric Acid Speleogenesis Associated with a Glacially Driven Groundwater System – Paleo-spring “Pipes” at Borup Fiord Pass, Nunavut, Astrobiology, 12, 19–28,
https://doi.org/10.1089/ast.2011.0700, 2012.
Grasby, S. E., Proemse, B. C., and Beauchamp, B.: Deep groundwater
circulation through the High Arctic cryosphere forms Mars-like gullies,
Geology, 42, 651–654, https://doi.org/10.1130/G35599.1, 2014.
Gregersen, O. and Eidsmoen, T.: Permafrost conditions in the shore area at
Svalbard, in: Proceedings of the Fifth International Conference
on Permafrost, Trondheim, Norway, 2–5 August 1988, 933–936, 1988.
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N.,
Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J.,
Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J.,
Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N.,
Rühaak, W., Scheidegger, J., Selroos, J. O., Therrien, R., Vidstrand, P.,
and Voss, C.: Groundwater flow and heat transport for systems undergoing
freeze-thaw: Intercomparison of numerical simulators for 2D test cases, Adv.
Water Resour., 114, 196–218, https://doi.org/10.1016/j.advwatres.2018.02.001,
2018.
Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E., and Schuur, E. A.
G.: Changing permafrost in a warming world and feedbacks to the Earth
system, Environ. Res. Lett., 11, 040201, https://doi.org/10.1088/1748-9326/11/4/040201,
2016.
Grundvåg, S.-A., Jelby, M. E., Sliwinska, K. K., Nøhr-Hansen, H.,
Aadland, T., Sandvik, S. E., Tennvassås, I., Engen, T., and Olaussen, S.:
Sedimentology and palynology of the Lower Cretaceous succession of central
Spitsbergen: integration of subsurface and outcrop data, Nor. J. Geol.,
99, 253–284, https://doi.org/10.17850/njg006, 2019.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and
Telford, R. J.: Variations in temperature and extent of Atlantic Water in
the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26,
3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005, 2007.
Haldorsen, S., Heim, M., and Lauritzen, S. E.: Subpermafrost Groundwater,
Western Svalbard, Nord. Hydrol., 27, 57–68, https://doi.org/10.2166/nh.1996.0019,
1996.
Haldorsen, S., Heim, M., Dale, B., Landvik, J. Y., van der Ploeg, M.,
Leijnse, A., Salvigsen, O., Hagen, J. O., and Banks, D.: Sensitivity to
long-term climate change of subpermafrost groundwater systems in Svalbard,
Quaternary Res., 73, 393–402, https://doi.org/10.1016/j.yqres.2009.11.002, 2010.
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B., Sorteberg, A., Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W., Bogen, J., Borstad, C., Breili, K., Breivik, Ø., Børsheim, K. Y., Christiansen, H. H., Dobler, A., Engeset, R., Frauenfelder, R., Gerland, S., Gjelten, H. M., Gundersen, J., Isaksen, K., Jaedicke, C., Kierulf, H., Kohler, J., Li, H., Lutz, J., Melvold, K., Mezghani, A., Nilsen, F., Nilsen, I. B., Nilsen, J. E. Ø., Pavlova, O., Ravndal, O., Risebrobakken, B., Saloranta, T., Sandven, S., Schuler, T. V, Simpson, M. J. R., Skogen, M., Smedsrud, L. H., Sund, M., Vikhamar-Schuler, D., Westermann, S., and Wong, W. K.: Climate in Svalbard 2100 – a knowledge base for climate adaption, Norwegian Centre for Climate Services Report 1/2019, Norwegian Environment Agency, Trondheim, Norway, 105, 2019.
Harada, K. and Yoshikawa, K.: Permafrost age and thickness near
Adventfjorden, Spitsbergen, Polar Geogr., 20, 267–281,
https://doi.org/10.1080/10889379609377607, 1996.
Hodson, A., Nowak, A., Redeker, K. R., Holmlund, E. S., Christiansen, H. H.,
and Turchyn, A. V.: Seasonal Dynamics of Methane and Carbon Dioxide Evasion From an Open System Pingo: Lagoon Pingo, Svalbard, Front. Earth Sci., 7, 30,
https://doi.org/10.3389/feart.2019.00030, 2019.
Hodson, A. J., Nowak, A., Hornum, M. T., Senger, K., Redeker, K., Christiansen, H. H., Jessen, S., Betlem, P., Thornton, S. F., Turchyn, A. V., Olaussen, S., and Marca, A.: Sub-permafrost methane seepage from open-system pingos in Svalbard, The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, 2020.
Hornum, M. T.: Postglacial Rebound, Permafrost Growth, and its Impact on
Groundwater Flow and Pingo Formation, University of Copenhagen,
available at: https://researchinsvalbard.no/project/8729 (last access: 16 December 2020), 2018.
Hornum, M. T.: mikkeltoft/-1DHT-model-code: 1DHT model code v1.0 (Version v1.1), Zenodo, https://doi.org/10.5281/zenodo.4240594, 2020.
Humlum, O.: Holocene permafrost aggradation in Svalbard, Geol. Soc. Spec.
Publ., 242, 119–130, https://doi.org/10.1144/GSL.SP.2005.242.01.11, 2005.
Humlum, O., Instanes, A., and Sollid, J. L.: Permafrost in Svalbard: A review
of research history, climatic background and engineering challenges, Polar
Res., 22, 191–215, https://doi.org/10.3402/polar.v22i2.6455, 2003.
Huq, F., Smalley, P. C., Mørkved, P. T., Johansen, I., Yarushina, V., and
Johansen, H.: The Longyearbyen CO2 Lab: Fluid communication in reservoir and
caprock, Int. J. Greenh. Gas Control, 63, 59–76, https://doi.org/10.1016/j.ijggc.2017.05.005, 2017.
Ingólfsson, Ó. and Landvik, J. Y.: The Svalbard–Barents Sea ice-sheet – Historical, current and future perspectives, Quaternary Sci. Rev., 64,
33–60, https://doi.org/10.1016/j.quascirev.2012.11.034, 2013.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P.
S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a
multi-method reconstruction approach, Sci. Data, 7, 1–13,
https://doi.org/10.1038/s41597-020-0530-7, 2020.
Kidson, C. and Heyworth, A.: Holocene eustatic sea level change, Nature,
273, 748–750, https://doi.org/10.1038/273748a0, 1978.
Koevoets, M. J., Hammer, Ø., Olaussen, S., Senger, K., and Smelror, M.:
Integrating subsurface and outcrop data of the Middle Jurassic to Lower
Cretaceous Agardhfjellet Formation in central Spitsbergen, Nor. J. Geol.,
98, 1–34, https://doi.org/10.17850/njg98-4-01, 2018.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263,
https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Lacelle, D.: On the δ18O, δD and D-excess relations in
meteoric precipitation and during equilibrium freezing: Theoretical approach
and field examples, Permafr. Periglac. Process., 22, 13–25,
https://doi.org/10.1002/ppp.712, 2011.
Lehmann, M. and Siegenthaler, U.: Equilibrium oxygen- and hydrogen-isotope
fractionation between ice and water, J. Glaciol., 37, 23–26,
https://doi.org/10.3189/s0022143000042751, 1991.
Leith, K., Moore, J. R., Amann, F., and Loew, S.: Subglacial extensional
fracture development and implications for Alpine Valley evolution, J.
Geophys. Res.-Earth, 119, 62–81, https://doi.org/10.1002/2012JF002691, 2014.
Lemmen, D. S., Aitken, A. E., and Gilbert, R.: Early Holocene deglaciation of
Expedition and Strand fiords, Canadian High Arctic, Can. J. Earth Sci.,
31, 943–958, https://doi.org/10.1139/e94-084, 1994.
Liestøl, O.: Pingos, springs, and permafrost in Spitsbergen, Nor. Polarinstitutt Årb., 1975, 7–29, 1977.
Liestøl, O.: Open-system pingos in Spitsbergen, Nor. Geogr. Tidsskr., 50, 81–84,
https://doi.org/10.1080/00291959608552355, 1996.
Lønne, I. and Nemec, W.: High-arctic fan delta recording deglaciation and
environment disequilibrium, Sedimentology, 51, 553–589,
https://doi.org/10.1111/j.1365-3091.2004.00636.x, 2004.
Mackay, J. R.: Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study, Geogr. Phys. Quat.,
52, 271–323, https://doi.org/10.7202/004847ar, 1998.
Manger, G. E.: Porosity and Bulk Density of Sedimentary Rocks, US Geological Survey Bulletin 1144-E, US Government Printing Office, Washington D.C., USA, 60, https://doi.org/10.3133/b1144E, 1963.
Mangerud, J. and Svendsen, J. I.: The Holocene Thermal Maximum around
Svalbard, Arctic North Atlantic, molluscs show early and exceptional warmth,
Holocene, 28, 65–83, https://doi.org/10.1177/0959683617715701, 2017.
Marshall, C., Uguna, J., Large, D. J., Meredith, W., Jochmann, M., Friis,
B., Vane, C., Spiro, B. F., Snape, C. E., and Orheim, A.: Geochemistry and
petrology of palaeocene coals from Spitzbergen – Part 2: Maturity variations
and implications for local and regional burial models, Int. J. Coal Geol.,
143, 1–10, https://doi.org/10.1016/j.coal.2015.03.013, 2015.
MathWorks: MATLAB R2019b, available at:
https://se.mathworks.com/products/matlab.html, last access: 1 December 2019.
Mau, S., Römer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E.,
Geprägs, P., Wintersteller, P., Hsu, C. W., Loher, M., and Bohrmann, G.:
Widespread methane seepage along the continental margin off Svalbard – from
Bjørnøya to Kongsfjorden, Sci. Rep.-UK, 7, 42997, https://doi.org/10.1038/srep42997, 2017.
McCauley, C. A., White, D. M., Lilly, M. R., and Nyman, D. M.: A comparison
of hydraulic conductivities, permeabilities and infiltration rates in frozen
and unfrozen soils, Cold Reg. Sci. Technol., 34, 117–125,
https://doi.org/10.1016/S0165-232X(01)00064-7, 2002.
McDonald, M. G. and Harbaugh, A. W.: A modular three-dimensional finite-difference ground-water flow model, Techniques of Water-Resources Investigations 06-A1, US Geological Survey, Reston, VA, USA, 586, https://doi.org/10.3133/twri06A1, 1988.
Mottaghy, D. and Rath, V.: Latent heat effects in subsurface heat transport
modelling and their impact on palaeotemperature reconstructions, Geophys. J.
Int., 164, 236–245, https://doi.org/10.1111/j.1365-246X.2005.02843.x, 2006.
Myhre, C. L., Ferré, B., Platt, S. M., Silyakova, A., Hermansen, O.,
Allen, G., Pisso, I., Schmidbauer, N., Stohl, A., Pitt, J., Jansson, P.,
Greinert, J., Percival, C., Fjaeraa, A. M., O'Shea, S. J., Gallagher, M., Le
Breton, M., Bower, K. N., Bauguitte, S. J. B., Dalsøren, S.,
Vadakkepuliyambatta, S., Fisher, R. E., Nisbet, E. G., Lowry, D., Myhre, G.,
Pyle, J. A., Cain, M., and Mienert, J.: Extensive release of methane from
Arctic seabed west of Svalbard during summer 2014 does not influence the
atmosphere, Geophys. Res. Lett., 43, 4624–4631,
https://doi.org/10.1002/2016GL068999, 2016.
Neuzil, C. E.: Abnormal pressures as hydrodynamic phenomena, Am. J. Sci.,
295, 742–786, https://doi.org/10.2475/ajs.295.6.742, 1995.
Neuzil, C. E.: Hydromechanical coupling in geologic processes, Hydrogeol.
J., 11, 41–83, https://doi.org/10.1007/s10040-002-0230-8, 2003.
Neuzil, C. E.: Hydromechanical effects of continental glaciation on
groundwater systems, Geofluids, 12, 22–37,
https://doi.org/10.1111/j.1468-8123.2011.00347.x, 2012.
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term
temperature trends and variability on spitsbergen: The extended svalbard
airport temperature series, 1898–2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2014.
Norwegian Polar Institute: Map data, available at:
https://geodata.npolar.no/ (last access: 13 May 2020), 2019.
Ohm, S. E., Larsen, L., Olaussen, S., Senger, K., Birchall, T., Demchuk, T.,
Hodson, A., Johansen, I., Titlestad, G. O., Karlsen, D. A., and Braathen, A.:
Discovery of shale gas in organic-rich Jurassic successions, Adventdalen,
Central Spitsbergen, Norway, Nor. J. Geol., 99, 1–28,
https://doi.org/10.17850/njg007, 2019.
Okiongbo, K. S.: Effective Stress-Porosity Relationship above and Within the
Oil Window in the North Sea Basin, Res. J. Appl. Sci. Eng. Technol., 3,
32–38, 2011.
Olaussen, S., Senger, K., Braathen, A., Grundvåg, S.-A., and Mørk, A.:
You learn as long as you drill, research synthesis from the Longyearbyen CO2
Laboratory, Svalbard, Norway, Nor. J. Geol., 99, 157–187,
https://doi.org/10.17850/njg008, 2020.
Orvin, A. K.: Litt om kilder på Svalbard, Nor. Geol. Tidsskr., 10, 15–38, 1944.
Pollock, D. W.: User Guide for MODPATH Version 7-A Particle-Tracking Model
for MODFLOW, Open File Rep., 1086, US Geological Survey, Reston, VA, USA, 41, https://doi.org/10.3133/ofr20161086, 2016.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and
Marchenko, S.: Recent advances in permafrost modelling, Permafr. Periglac.
Process., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008.
Robertson, E. C.: Thermal properties of rocks, Report 88-441, US Dep. Inter.,
US Geological Survey, Reston, VA, USA, 106, 1988.
Scheidegger, J. M. and Bense, V. F.: Impacts of glacially recharged
groundwater flow systems on talik evolution, J. Geophys. Res.-Earth,
119, 758–778, https://doi.org/10.1002/2013JF002894, 2014.
Scheidegger, J. M., Bense, V. F., and Grasby, S. E.: Transient nature of
Arctic spring systems driven by subglacial meltwater, Geophys. Res. Lett.,
39, 1–6, https://doi.org/10.1029/2012GL051445, 2012.
Schlumberger©: Petrel E&P, available at:
https://www.software.slb.com/products/petrel, last access: 1 December 2019.
Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J.
F., Gryziec, J. D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft,
D. P., Liu, L., Herman-Mercer, N., Mu, C., Roth, D. A., Schaefer, T.,
Striegl, R. G., Wickland, K. P., and Zhang, T.: Permafrost Stores a Globally
Significant Amount of Mercury, Geophys. Res. Lett., 45, 1463–1471,
https://doi.org/10.1002/2017GL075571, 2018.
Singhal, B. B. S. and Gupta, R. P.: Applied Hydrogeology of Fractured Rocks,
2nd ed., Springer, Dordrecht, the Netherlands, 2010.
Skempton, A. W.: The consolidation of clays by gravitational compaction, Q.
J. Geol. Soc. London, 125, 373–408, https://doi.org/10.1144/gsjgs.125.1.0373,
1969.
Šuklje, L.: Rheologic Aspects of Soil Mechanics, 1st ed.,
Wiley-Interscience, London, UK, 1969.
Svensson, H.: Pingos i yttre delen av Adventdalen, Nor. Polarinstitutt Årb., 1969, 168–174, 1970.
Taniguchi, M.: Evaluations of the saltwater-groundwater interface from
borehole temperature in a coastal region, Geophys. Res. Lett., 27,
713–716, https://doi.org/10.1029/1999GL002366, 2000.
van der Bilt, W. G. M., D'Andrea, W. J., Bakke, J., Balascio, N. L., Werner,
J. P., Gjerde, M., and Bradley, R. S.: Alkenone-based reconstructions reveal
four-phase Holocene temperature evolution for High Arctic Svalbard, Quaternary
Sci. Rev., 183, 204–213, https://doi.org/10.1016/j.quascirev.2016.10.006, 2018.
van der Ploeg, M. J., Haldorsen, S., Leijnse, A., and Heim, M.: Subpermafrost
groundwater systems: Dealing with virtual reality while having virtually no
data, J. Hydrol., 475, 42–52, https://doi.org/10.1016/j.jhydrol.2012.08.046, 2012.
Verruijt, A.: A note on the Ghyben–Herzberg formula, Int. Assoc. Sci.
Hydrol. Bull., 13, 43–46, https://doi.org/10.1080/02626666809493624, 1968.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing
permafrost – a review, Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010,
2016.
Wangen, M., Souche, A., and Johansen, H.: A model for underpressure
development in a glacial valley, an example from Adventdalen, Svalbard,
Basin Res., 28, 752–769, https://doi.org/10.1111/bre.12130, 2016.
Weidick, A. and Bennike, O.: Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: A review, Geol. Surv. Denmark Greenl. Bull., 14, 1–80, https://doi.org/10.34194/geusb.v14.4985, 2007.
Williams, J. R.: Ground Water in the Permafrost Regions of Alaska, USGS Prof. Paper 696, US Geological Survey, Reston, VA, USA, 90, https://doi.org/10.3133/pp696, 1970.
Williams, P. J. and Smith, M. W.: The Frozen Earth – Fundamentals of Geocryology, 1st edn., Cambridge University Press, New York, NY, USA, https://doi.org/10.1017/CBO9780511564437, 1989.
Woo, M. K.: Permafrost Hydrology, Springer, Berlin and Heidelberg, Germany, 2012.
Yang, Y. and Aplin, A. C.: Definition and practical application of mudstone
porosity – effective stress relationships, Pet. Geosci., 10, 153–162,
https://doi.org/10.1144/1354-079302-567, 2004.
Yoshikawa, K. and Harada, K.: Observations on nearshore pingo growth,
Adventdalen, Spitsbergen, Permafr. Periglac. Process., 6, 361–372,
https://doi.org/10.1002/ppp.3430060407, 1995.
Yoshikawa, K. and Nakamura, T.: Pingo growth ages in the delta area,
Adventdalen, Spitsbergen, Polar Rec., 32, 347–352,
https://doi.org/10.1017/S0032247400067565, 1996.
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and...