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S1 Validation of the 1DHT model 

The 1D heat transfer model (1DHT) consists of a MATLAB script (MathWorks®, 2019) tailored to simulate dynamics of 

ground temperatures and permafrost conditions. The model code is publicly available at DOI:10.5281/zenodo. 4240594. 

Before the 1HDT model was applied in our investigation, it was validated through comparison with two analytical solutions. 

In the following, we first describe the basis of the 1DHT model. Second, we present two different analytical solutions and 5 

show how they compare with numerical results as simulated by the 1DHT model.  

S1.1 Model code 

In the core of the 1DHT model is an explicit forward-difference time approximation of the one-dimensional conductive heat 

transfer (Eq. 1). For the interior cell, 𝑖, which is situated in a 1D grid in all of which the initial temperature, 𝑇𝑝, is known (Fig. 

S1), this approximation states that at a new time, (𝑝 + 1), 10 
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where 𝑇𝑖
𝑝+1

 is the temperature in cell 𝑖 at the time (𝑝 + 1), Δ𝑡 is the time step, and Δ𝑥 is the distance to the center of the 

neighboring cells. The thermal diffusivity, 𝛼, is calculated as defined by Eqs. (1), (3), and (4) in Sect. 4.1. Equation S1 is only 

a stable numerical solution if the stability criterion is true (Bergman et al., 2011): 15 

𝛼 Δ𝑡

Δ𝑥2 ≤
1

2
        Δ𝑡 ≤

Δ𝑥2

𝛼

1

2
         (S2) 

 

Figure S1 Conceptual representation of a 1D grid for which the 1DHT model simulates temperature changes (Eq. S1). 

S1.2 Neumann’s solution 

In the case of phase change, conductive heat transfer becomes non-linear and the mathematical (Stefan) problems that arise 20 

may be of considerable difficulty (Carslaw and Jaeger, 1959). One of the exact solutions that deal with such a problem is the 

Neumann solution, which here is presented largely based on Mottaghy and Rath (2006). The presented version of the Neumann 

solution solves the 1D heat equation (Eq. 1), for a semi-infinite body, which consists of a single component and initially has 

the liquidus temperature. At the surface, the body is exposed to a negative temperature step change and the medium starts to 

change phase from liquid to solid. The position of the phase front, 𝑍, is expressed as a function of time, 𝑡:  25 

𝑍(𝑡) = 2 ∙ 𝛾 ∙ √𝛼𝑠𝑜 ∙ 𝑡          (S3) 
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where 𝛾 is a parameter determined by 
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In both above equations, 𝛼’s are thermal diffusivities, 𝑘’s are thermal conductivities, and subscripts 𝑠𝑜 and 𝑙𝑖 refer to the solid 

or liquid state. 𝑇𝐿  and 𝑇𝑆 are the liquidus and solidus temperatures and 𝑇0 is the surface temperature at 𝑡 > 0. The latent heat 30 

of fusion is incorporated in the expression of the thermal diffusivity of the liquid: 
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         (S5) 

where 𝜌𝑙𝑖  and 𝑐𝑙𝑖  is the liquid’s density and specific heat capacity, respectively. 

To compare the 1DHT model with the exact Neumann’s solution (Eq. S3), a situation which can be handled by both 

methods, was defined: A body of pure water, initially at the liquidus temperature 𝑇𝐿 = 0 °C is exposed to a surface temperature 35 

of 𝑇0 = −4 °C for a period of 3000 yr. The thermal properties of ice and water are as listed Table 1 and the solidus temperature 

is 𝑇𝑆 = −2 °C. In the following, these conditions will be referred to as Neumann conditions.  

Solving Eq. S4 with the Neumann conditions, we found that 𝛾 = 0.0679. Numerically, the 1DHT model simulated 

the temperature development in a 1D-grid containing 100 cells each with a length of 2 m. From the model simulation results, 

the propagation of the freezing front was evaluated by interpolating 𝑇 = −2 °C. The propagation of the freezing front, as 40 

calculated by Neumann’s solution and evaluated from the 1DHT model simulation, is plotted on Fig. S2. The RMSE of the 

simulation results is 0.011 and show a relatively good model performance. 

 

 

Figure S2 Freezing front depth with time in a body of water under Neumann conditions (see text) as calculated by the numerical 1DHT 45 

model and the analytical Neumann’s solution. 
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S1.3 Step change in surface temperature (no latent heat effects)  

This analytical solution also assumes a negative temperature step change at the surface of a semi-infinite body: At the time 

𝑡=0, the surface temperature is 𝑇0𝑖, and at any later times (𝑡 > 0), it is 𝑇0. As opposed to Neumann’s solution, latent heat 

effects are neglected, but the initial medium (e.g., ground) temperature can follow any (uniform) geothermal gradient and the 50 

medium may consist of several components. Following the step change in surface temperature ( Δ𝑇0 = 𝑇0 − 𝑇0𝑖 ), the 

temperature change, Δ𝑇, is described as a function of time, 𝑡, and depth, 𝑧, by (Carslaw and Jaeger, 1959; Eppelbaum et al., 

2014):  

Δ𝑇(𝑧, 𝑡) = Δ𝑇0 ∙ erfc (
𝑧

2∙√𝛼𝑒𝑓𝑓∙𝑡
)        (S6)  

where 𝛼𝑒𝑓𝑓  is the effective thermal diffusivity. As with Neumann’s solution, it was necessary to describe conditions, which 55 

this analytical solution can handle. The initial surface temperature was defined as 𝑇0𝑖 = 5 °C and the ground temperature 

distribution followed a geothermal gradient of 0.025 °C m-1. At times 𝑡 > 0, the surface temperature was defined as 𝑇0 = 0°𝐶 

implying that Δ𝑇0 = −5 °C. The medium had the geothermal properties of silty sand (Table 2) and a total porosity n=0.4, 

which was fully saturated with water. This yields 𝛼𝑒𝑓𝑓 = 5.7 m2 yr-1.  

The numerical grid was set up as for the simulation of the Neumann conditions except for the temperature distribution, 60 

which followed the geothermal gradient as described above. The calculated ground temperature distribution from both the 

1DHT model and the analytical solution at 𝑡 = 1000 yr is presented on Fig. S3. An excellent performance by the 1DHT model 

is indicated by a RMSE of 1.3 ∙ 10−5. 

 

 65 

Figure S3 Comparison of the ground temperature distribution at 𝑡 = 1000 yr calculated analytically (Eq. S6) and as simulated by the 1DHT 

model. 
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S2 Hydraulic conductivity of Carolinefjellet and Helvetiafjellet Formations 

The vertical permeability, 𝜅𝑣, of the sandstone-dominated Carolinefjellet and Helvetiafjellet formations were measured as part 

of the Longyearbyen CO2 Laboratory Project (Olaussen et al., 2020, and references therein). The small-scale horizontal 70 

permeability, 𝜅ℎ, for sandstones is typically a factor two higher than 𝜅𝑣 (Domenico and Schwartz, 1998) and we converted the 

horizontal hydraulic conductivity, 𝐾ℎ, accordingly (Eq. 7). To tighten the 𝐾ℎ-range used in the groundwater model, we defined 

the realistic minimum, mean, and maximum values as the first, second and third quartiles of a statistical fit to the measured 

values. As illustrated on Fig. S4, three types of statistical distribution were tested; log-normal, Weibull and log-logistic (panels 

a), b) and c), respectively). While the log-logistic fit showed the best correlation, all three fits predicted the same hydraulic 75 

conductivities at the quartiles. 

 

Figure S4  Log-normal (a), Weibull (b) and log-logistic (c) fits to the measured hydraulic conductivities of Carolinefjellet and Helvetiafjellet 

formations. Original data from the Longyearbyen CO2 Laboratory Project (Olaussen et al., 2020, and references therein). The log-logistic fit 

shows the best correlation with the measured values and the values used in the groundwater model were thus defined by the quartiles 80 

predicted by this fit. Note that the two other fits both predict the same quartiles. 

S3 Major ions in Adventdalen pingo spring waters 

Hydrochemical data from 25 spring water samples from 2014 to 2017 presented by Hodson et al. (2020) and publicly available 

from DOI:10.5285/3d82fd3f-884b-47b6-b11c-6c96d66b950d give insights into the groundwater system in Adventdalen. As 

illustrated in Fig. S6a, water samples from Lagoon (LP), Førstehytte (FHP), Innerhytte (IHP) and River Pingos (RP) reveal 85 

that all these springs share the same sodium-bicarbonate (NaHCO3) water type. The only exception is four samples taken near 

River Pingo in 2017 of a magnesium-sulfate water type (Fig. S6b). These four samples were excluded from the discussion 

because they might not be associated with a pingo according to Hodson et al. (2020).  
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Figure S5 Stiff plots of major ion concentrations from pingo spring water samples in Adventdalen (data first presented in 

Hodson et al., 2020). The corners of the Stiff polygons represent mean concentrations. 
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