Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4165-2020
https://doi.org/10.5194/tc-14-4165-2020
Research article
 | 
24 Nov 2020
Research article |  | 24 Nov 2020

The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica

Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (09 Sep 2020) by Elizabeth Bagshaw
AR by Jenny Turton on behalf of the Authors (15 Sep 2020)  Author's response   Manuscript 
ED: Publish as is (13 Oct 2020) by Elizabeth Bagshaw
AR by Jenny Turton on behalf of the Authors (14 Oct 2020)  Manuscript 
Download
Short summary
Föhn winds are warm and dry downslope winds in the lee of a mountain range, such as the Antarctic Peninsula. Föhn winds heat the ice of the Larsen C Ice Shelf at the base of the mountains and promote more melting than during non-föhn periods in spring, summer and autumn in both model output and observations. Especially in spring, when they are most frequent, föhn winds can extend the melt season by over a month and cause a similar magnitude of melting to that observed in summer.