Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3995-2020
https://doi.org/10.5194/tc-14-3995-2020
Research article
 | 
14 Nov 2020
Research article |  | 14 Nov 2020

Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain

Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (31 Aug 2020) by Chris Derksen
AR by Maxim Lamare on behalf of the Authors (09 Sep 2020)  Author's response   Manuscript 
ED: Publish as is (22 Sep 2020) by Chris Derksen
AR by Maxim Lamare on behalf of the Authors (05 Oct 2020)
Download
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.