Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 3995–4020, 2020
https://doi.org/10.5194/tc-14-3995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 14, 3995–4020, 2020
https://doi.org/10.5194/tc-14-3995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Nov 2020

Research article | 14 Nov 2020

Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain

Maxim Lamare et al.

Data sets

REDRESS GitHub repository Maxim Lamare https://github.com/maximlamare/REDRESS

Publications Copernicus
Download
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Terrain features found in mountainous regions introduce large errors into the calculation of the...
Citation