Articles | Volume 14, issue 9
The Cryosphere, 14, 3155–3174, 2020
https://doi.org/10.5194/tc-14-3155-2020
The Cryosphere, 14, 3155–3174, 2020
https://doi.org/10.5194/tc-14-3155-2020

Research article 16 Sep 2020

Research article | 16 Sep 2020

Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change

Eleanor J. Burke et al.

Data sets

CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical T. Ziehn, M. Chamberlain, A. Lenton et al. https://doi.org/10.22033/ESGF/CMIP6.4272

BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical T. Wu, M. Chu, M. Dong et al. https://doi.org/10.22033/ESGF/CMIP6.2948

CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical X. Rong https://doi.org/10.22033/ESGF/CMIP6.9754

CCCma CanESM5 model output prepared for CMIP6 CMIP historical N. C. Swart, J. N. S. Cole, V. V. Kharin et al. https://doi.org/10.22033/ESGF/CMIP6.3610

NCAR CESM2 model output prepared for CMIP6 CMIP historical G. Danabasoglu https://doi.org/10.22033/ESGF/CMIP6.7627

CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical R. Seferian https://doi.org/10.22033/ESGF/CMIP6.4068

E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP historical D. C. Bader, R. Leung, M. Taylor, and R. B. McCoy https://doi.org/10.22033/ESGF/CMIP6.4497

EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical EC-Earth Consortium (EC-Earth) https://doi.org/10.22033/ESGF/CMIP6.4700

CAS FGOALS-f3-L model output prepared for CMIP6 CMIP historical Y. Yu https://doi.org/10.22033/ESGF/CMIP6.3355

NOAA-GFDL GFDL-CM4 model output historical H. Guo, J. G. John, C. Blanton et al. https://doi.org/10.22033/ESGF/CMIP6.8594

NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical NASA Goddard Institute for Space Studies (NASA/GISS) https://doi.org/10.22033/ESGF/CMIP6.7127

IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical O. Boucher, S. Denvil, A. Caubel, and M. A. Foujols https://doi.org/10.22033/ESGF/CMIP6.5195

MIROC MIROC6 model output prepared for CMIP6 CMIP historical H. Tatebe and M. Watanabe https://doi.org/10.22033/ESGF/CMIP6.5603

MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical J. Jungclaus, M. Bittner, K.-H. Wieners et al. https://doi.org/10.22033/ESGF/CMIP6.6594

MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical S. Yukimoto, T. Koshiro, H. Kawai et al. https://doi.org/10.22033/ESGF/CMIP6.6842

NCC NorESM2-LM model output prepared for CMIP6 CMIP historical Ø. Seland, M. Bentsen,D. J. L. Oliviè et al. https://doi.org/10.22033/ESGF/CMIP6.8036

AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical W.-L. Lee and H.-C. Liang, https://doi.org/10.22033/ESGF/CMIP6.9755

MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical Y. Tang, S. Rumbold, R. Ellis et al. https://doi.org/10.22033/ESGF/CMIP6.6113

Download
Short summary
Permafrost will degrade under future climate change. This will have implications locally for the northern high-latitude regions and may well also amplify global climate change. There have been some recent improvements in the ability of earth system models to simulate the permafrost physical state, but further model developments are required. Models project the thawed volume of soil in the top 2 m of permafrost will increase by 10 %–40 % °C−1 of global mean surface air temperature increase.