Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2869-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2869-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New gravity-derived bathymetry for the Thwaites, Crosson, and Dotson ice shelves revealing two ice shelf populations
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
David Porter
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964-8000, USA
Kirsty Tinto
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964-8000, USA
Romain Millan
Institut des Géosciences de l'Environnement, Université
Grenoble Alpes, CNRS, 38000 Grenoble, France
Atsuhiro Muto
Dept. of Earth and Environmental Science, Temple University,
Philadelphia, PA 19122, USA
Kelly Hogan
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Robert D. Larter
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Alastair G. C. Graham
College of Marine Science, University of South Florida, St
Petersburg, FL 33701, USA
John D. Paden
Center for Remote Sensing of Ice Sheets (CReSIS), The University of
Kansas, KS 66045, USA
Related authors
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data, 17, 2911–2931, https://doi.org/10.5194/essd-17-2911-2025, https://doi.org/10.5194/essd-17-2911-2025, 2025
Short summary
Short summary
This paper describes the second version of a deep radiostratigraphic database for the Greenland Ice Sheet. It includes numerous improvements to the original database from 2015 and includes newer high-quality radar sounding data from 2014–2019. It represents a unique and widespread constraint on the history of the ice sheet that could be helpful to initialize and interpret ice-sheet models.
Matthew Davis Tankersley, Huw Horgan, Fabio Caratori-Tontini, and Kirsty Tinto
EGUsphere, https://doi.org/10.5194/egusphere-2025-2380, https://doi.org/10.5194/egusphere-2025-2380, 2025
Short summary
Short summary
We studied how gravity data can be used to estimate the shape of the seafloor beneath Antarctica’s floating ice shelves, where direct measurements are difficult. Using computer models based on real Antarctic data, we tested when this method works well and where it has limits. We found that it could greatly improve seafloor maps for most ice shelves. Better maps will help us understand how ocean water melts ice from below, which affects future sea level rise.
Charlotte M. Carter, Steven Franke, Daniela Jansen, Chris R. Stokes, Veit Helm, John Paden, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1743, https://doi.org/10.5194/egusphere-2025-1743, 2025
Short summary
Short summary
The landscapes beneath actively fast-flowing ice in Greenland have not been explored in detail, as digital elevation models do not have a high enough resolution to see these subglacial features. We use swath radar imaging to visualise these landforms at a high resolution, revealing a landscape that would usually be assumed to be indicative of faster ice flow than the current velocities. Interpretation of the landscape also gives an indication of the properties of the bed beneath the ice stream.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
David J. Purnell, Natalya Gomez, William Minarik, David Porter, and Gregory Langston
Earth Surf. Dynam., 9, 673–685, https://doi.org/10.5194/esurf-9-673-2021, https://doi.org/10.5194/esurf-9-673-2021, 2021
Short summary
Short summary
We present a new technique for precisely monitoring water levels (e.g. sea level, rivers or lakes) using low-cost equipment (approximately USD 100–200) that is simple to build and install. The technique builds on previous work using antennas that were designed for navigation purposes. Multiple antennas in the same location are used to obtain more precise measurements than those obtained when using a single antenna. Software for analysis is provided with the article.
Joseph A. MacGregor, Michael Studinger, Emily Arnold, Carlton J. Leuschen, Fernando Rodríguez-Morales, and John D. Paden
The Cryosphere, 15, 2569–2574, https://doi.org/10.5194/tc-15-2569-2021, https://doi.org/10.5194/tc-15-2569-2021, 2021
Short summary
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Cited articles
Abulaitijiang, A., Andersen, O. B., and Sandwell, D.: Improved Arctic Ocean
Bathymetry Derived From DTU17 Gravity Model, Earth Space Sci., 6,
1336–1347, https://doi.org/10.1029/2018EA000502, 2019.
An, L., Rignot, E., Millan, R., Tinto, K., and Willis, J.: Bathymetry of
Northwest Greenland Using “Ocean Melting Greenland” (OMG) High-Resolution
Airborne Gravity and Other Data, Remote Sensing, 11, 131, https://doi.org/10.3390/rs11020131, 2019.
Assmann, K. M., Jenkins, A., Shoosmith, D. R., Walker, D. P., Jacobs, S. S.,
and Nicholls, K. W.: Variability of Circumpolar Deep Water transport onto
the Amundsen Sea Continental shelf through a shelf break trough, J.
Geophys. Res.-Oceans, 118, 6603–6620, https://doi.org/10.1002/2013JC008871, 2013.
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni,
A., Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley, R.,
Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., and
Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment
promotes ice-sheet stability, Science, 360, 1335, https://doi.org/10.1126/science.aao1447,
2018.
Becker, D., Nielsen, J. E., Ayres-Sampaio, D., Forsberg, R., Becker, M., and
Bastos, L.: Drift reduction in strapdown airborne gravimetry using a simple
thermal correction, J. Geodesy, 89, 1133–1144, 2015.
Blankenship, D. D., Young, D., Holt, J. W., and Kempf, S. D.: AGASEA Ice
Thickness Profile Data from the Amundsen Sea Embayment, Antarctica, U.S.
Antarctic Program (USAP) Data Center, 2012.
Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., and Makinson, K.: Seabed topography beneath Larsen C Ice Shelf from seismic soundings, The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014, 2014.
Cochran, J. R. and Bell, R. E.: IceBridge Sander AIRGrav L1B Geolocated
Free Air Gravity Anomalies, Boulder, Colorado USA: NASA DAAC at the
National Snow and Ice Data Center, 2010 (updated 2018).
Cochran, J. R. and Bell, R. E.: Inversion of IceBridge gravity data for
continental shelf bathymetry beneath the Larsen Ice Shelf, Antarctica,
J. Glaciol., 58, 540–552, https://doi.org/10.3189/2012JoG3111J3033, 2012.
Cochran, J. R., Jacobs, S. S., Tinto, K. J., and Bell, R. E.: Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability, The Cryosphere, 8, 877–889, https://doi.org/10.5194/tc-8-877-2014, 2014.
Davies, D., Bingham, R. G., Graham, A. G. C., Spagnolo, M., Dutrieux, P.,
Vaughan, D. G., Jenkins, A., and Nitsche, F. O.: High-resolution
sub-ice-shelf seafloor records of twentieth century ungrounding and retreat
of Pine Island Glacier, West Antarctica, J. Geophys. Res.,
122, 1698–1714, https://doi.org/10.1002/2017JF004311, 2017.
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J.
Geophys. Res.-Oceans, 119, 2420–2438, https://doi.org/10.1002/2013JC009513, 2014.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S.
H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong
Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability,
Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014.
Forste, C., Schmidt, R., Stubenvoll, R., Flechtner, F., Meyer, U., Konig,
R., Neumayer, H., Biancale, R., Lemoine, J. M., Bruinsma, S., Loyer, S.,
Barthelmes, F., and Esselborn, S.: The Geo-ForschungsZentrum Potsdam/Groupe
de Recherche de Geodesie Spatiale satellite-only and combined gravity field
models:EIGEN-GL04S1 and EIGEN-GL04C, J. Geodesy, 82,
331–346, doi:310.1007/s00190-00007-00183-00198, 2008.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., Frese, R. R.
B., Young, D. A., Blankenship, D. D., Holt, J. W., Ivanov, S. V., Kiselev,
A. V., Masolov, V. N., Eagles, G., Gohl, K., Jokat, W., Damaske, D., Finn,
C., Aitken, A., Bell, R. E., Armadillo, E., Jordan, T. A., Greenbaum, J. S.,
Bozzo, E., Caneva, G., Forsberg, R., Ghidella, M., Galindo-Zaldivar, J.,
Bohoyo, F., Martos, Y. M., Nogi, Y., Quartini, E., Kim, H. R., and Roberts,
J. L.: New Magnetic Anomaly Map of the Antarctic, Geophys. Res.
Lett., 45, 6437–6449, https://doi.org/10.1029/2018GL078153, 2018.
Gómez-Ortiz, D. and Agarwal, B. N. P.: 3DINVER.M: a MATLAB program to
invert the gravity anomaly over a 3D horizontal density interface by
Parker–Oldenburg's algorithm, Comput. Geosci., 31, 513–520,
https://doi.org/10.1016/j.cageo.2004.11.004, 2005.
Graham, A. G. C., Larter, R. D., Gohl, K., Hillenbrand, C.-D., Smith, J. A.,
and Kuhn, G.: Bedform signature of a West Antarctic palaeo-ice stream
reveals a multi-temporal record of flow and substrate control, Quaternary
Sci. Rev., 28, 2774–2793, https://doi.org/10.1016/j.quascirev.2009.07.003, 2009.
Griggs, J. A. and Bamber, J. L.: Antarctic ice-shelf thickness from
satellite radar altimetry, J. Glaciol., 57, 485–498, https://doi.org/10.3189/002214311796905659, 2011.
Hodgson, D. A., Jordan, T. A., De Rydt, J., Fretwell, P. T., Seddon, S. A., Becker, D., Hogan, K. A., Smith, A. M., and Vaughan, D. G.: Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry, The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, 2019.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D.,
Totten Minzoni, R., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K.,
Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L.,Smith, J. A.,
Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor
bathymetry: implications for warm-water routing and
bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020.
Holland, P. R.: A model of tidally dominated ocean processes near ice shelf
grounding lines, J. Geophys. Res.-Oceans, 113, C11002, https://doi.org/10.1029/2007JC004576, 2008.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, A. P. M., and Corr, H.: New Boundary
Conditions for the West Antarctic Ice Sheet: Subglacial Topography of the
Thwaites and Smith Glacier Catchments, Geophys. Res. Let., 33, L09502,
https://doi.org/10.1029/2005GL025561, 2006.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Jacobs, S. S., Hellmer, H. H., and Jenkins, A.: Antarctic Ice Sheet melting
in the southeast Pacific, Geophys. Res. Lett., 23, 957–960, https://doi.org/10.1029/96GL00723, 1996.
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf,
Nat. Geosci., 4, 519–523, 2011.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R.,
Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in West
Antarctica and implications for its retreat, Nat. Geosci., 3, 468–472, doi:410.1038/ngeo1890, 2010.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S.
H., Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11,
733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018.
Jordan, T., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., Larter,
R., Graham, A., Paden, J., and Robinson, C.: Gravity-derived bathymetry for
the Thwaites, Crosson and Dotson ice shelves (2009–2019) (Version 1.0)
Natural Environment Research Council, UK Research & Innovation, UK Polar
Data Centre, https://doi.org/10.5285/7803DE8B-8A74-466B-888E-E8C737BF21CE, 2020a.
Jordan, T., Robinson, C., and Porter, D.: Processed line aeromagnetic data
over the Thwaites glacier region (2018/19 season), Natural Environment
Research Council, UK Research & Innovation, UK Polar Data Centre, https://doi.org/10.5285/776612D1-573C-49C4-AFF5-23B0FBA48271, 2020b.
Jordan, T. A. and Becker, D.: Investigating the distribution of magmatism
at the onset of Gondwana breakup with novel strapdown gravity and
aeromagnetic data, Phys. Earth Planet. In., 282, 77–88,
https://doi.org/10.1016/j.pepi.2018.07.007, 2018.
Jordan, T. A., Robinson, C., Porter, D., Locke, C., and Tinto, K.: Processed
line aerogravity data over the Thwaites Glacier region (2018/19 season),
Natural Environment Research Council, UK Research & Innovation, UK Polar
Data Centre, https://doi.org/10.5285/B9B28A35-8620-4182-BF9C-638800B6679B, 2020c.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Khazendar, A., Rignot, E., Schroeder, D. M., Seroussi, H., Schodlok, M. P.,
Scheuchl, B., Mouginot, J., Sutterley, T. C., and Velicogna, I.: Rapid
submarine ice melting in the grounding zones of ice shelves in West
Antarctica, Nat. Commun., 7, 13243, https://doi.org/10.1038/ncomms13243, 2016.
Larter, R. D., Graham, A. G. C., Gohl, K., Kuhn, G., Hillenbrand, C.-D.,
Smith, J. A., Deen, T. J., Livermore, R. A., and Schenke, H.-W.: Subglacial
bedforms reveal complex basal regime in a zone of paleo–ice stream
convergence, Amundsen Sea embayment, West Antarctica, Geology, 37, 411–414, https://doi.org/10.1130/G25505A.1, 2009.
Lilien, D. A., Joughin, I., Smith, B., and Gourmelen, N.: Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers, The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, 2019.
Miles, T., Lee, S. H., Wåhlin, A., Ha, H. K., Kim, T. W., Assmann, K.
M., and Schofield, O.: Glider observations of the Dotson Ice Shelf outflow,
Deep Sea-Res. Pt II, 123, 16–29,
https://doi.org/10.1016/j.dsr2.2015.08.008, 2016.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of
Thwaites Glacier, West Antarctica, Sci. Adv., 5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019.
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from
Operation IceBridge gravity and other data, Geophys. Res. Lett.,
44, 1360–1368, https://doi.org/10.1002/2016GL072071, 2017.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. V. D., Ommen, T. D. V., Wessem, M. V., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Muto, A., Peters, L. E., Gohl, K., Sasgen, I., Alley, R. B., Anandakrishnan,
S., and Riverman, K. L.: Subglacial bathymetry and sediment distribution
beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ
geophysical data: New results, Earth Planet. Sc. Lett., 433,
63–75, https://doi.org/10.1016/j.epsl.2015.10.037, 2016.
Nitsche, F. O., Gohl, K., Larter, R. D., Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Jacobs, S., Anderson, J. B., and Jakobsson, M.: Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica, The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, 2013.
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.:
IceBridge MCoRDS L2 Ice Thickness, Version 1, NASA, NASA National
Snow and Ice Data Center Distributed Active Archive Center, Boulder,
Colorado USA, 2010 (updated 2018).
Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W. D., Brockmann, J. M.,
Krasbutter, I., Höck, E., and Fecher, T.: GOCE gravity field model
derived from orbit and gradiometery data applying the time-wise method, ESA
Living Planet Symposium, Bergen, Norway, 2010,
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van
den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res.
Lett., 38, L10504, https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3409, https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2. NASA National Snow and Ice Data Center
Distributed Active Archive Center, Boulder, Colorado USA, 2017.
Rosier, S. H. R., Hofstede, C., Brisbourne, A. M., Hattermann, T., Nicholls,
K. W., Davis, P. E. D., Anker, P. G. D., Hillenbrand, C.-D., Smith, A. M.,
and Corr, H. F. J.: A New Bathymetry for the Southeastern Filchner-Ronne Ice
Shelf: Implications for Modern Oceanographic Processes and Glacial History,
J. Geophys. Res.-Oceans, 123, 4610–4623,
https://doi.org/10.1029/2018JC013982, 2018.
Roy, L., Sen, M. K., Blankenship, D. D., Stoffa, P. L., and Richter, T. G.:
Inversion and uncertainty estimation of gravity data using simulated
annealing: An application over Lake Vostok, East Antarctica, Geophysics, 70,
J1–J12, https://doi.org/10.1190/1.1852777, 2005.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B
embayment, Antarctica, Geophys. Res. Lett., 31, L18402,
https://doi.org/10.1029/2004GL020670, 2004.
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D.
H., Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R.,
Dutrieux, P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B.,
Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J.,
Trusel, L. D., Vaughan, D. G., and Yager, P. L.: How much, how fast?: A
science review and outlook for research on the instability of Antarctica's
Thwaites Glacier in the 21st century, Global Planet. Change, 153,
16–34, https://doi.org/10.1016/j.gloplacha.2017.04.008, 2017.
Schoof, C.: Ice sheet grounding line dynamics: steady states, stability and
hysteresis, J. Geophys. Res., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M.,
Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys.
Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017.
Smith, W. H. F. and Sandwell, D. T.: Bathymetric prediction from dense
satellite altimetry and sparse shipboard bathymetry, J. Geophys.
Res.-Sol. Ea., 99, 21803–21824, https://doi.org/10.1029/94JB00988, 1994.
Smith, W. H. F. and Wessel, P.: Gridding with continuous curvature splines
in tension, Geophysics, 55, 293–305, 1990.
Studinger, M., Bell, R., and Frearson, N.: Comparison of AIRGrav and GT-1A
airborne gravimeters for research applications, Geophysics, 73, 151–161,
2008.
Telford, W. M., Geldart, L. P., and Sheriff, R. E.: Applied Geophysics, 2nd
Edn., Cambridge University Press, Cambridge, 1990.
Tinto, K., Bell, R. E., and Cochran, J. R.: IceBridge Sander AIRGrav L3
Bathymetry, Version 1, NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado USA, 2011.
Tinto, K. J. and Bell, R. E.: Progressive unpinning of Thwaites Glacier
from newly identified offshore ridge: Constraints from aerogravity,
Geophys. Res. Lett., 38, L20503, https://doi.org/10.1029/2011GL049026, 2011.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A.,
Das, I., Caratori Tontini, F., Porter, D. F., Frearson, N. P., Howard, S.
L., Siegfried, M. R., Mosbeux, C., Becker, M. K., Bertinato, C., Boghosian,
A., Brady, N., Burton, B. L., Chu, W., Cordero, S. I., Dhakal, T., Dong, L.,
Gustafson, C. D., Keeshin, S., Locke, C., Lockett, A., O'Brien, G., Spergel,
J. J., Starke, S. E., Tankersley, M., Wearing, M. G., and Bell, R. E.: Ross
Ice Shelf response to climate driven by the tectonic imprint on seafloor
bathymetry, Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
von Frese, R. R. B., Hinze, W. J., Braile, L. W., and Luca, A. J.: Spherical
earth gravity and magnetic anomaly modeling by Gauss- Legendre quadrature
integration, J. Geophys., 49, 234–242, 1981.
Weertman, J.: Stability of the junction of an ice sheet and an ice shelf,
J. Glaciol., 13, 3–11, 1974.
Wei, M. and Schwarz, K. P.: Flight test results from a strapdown airborne
gravity system, J. Geodesy, 72, 323–332, 1998.
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a...