Articles | Volume 14, issue 1
https://doi.org/10.5194/tc-14-211-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-211-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity
Ian Joughin
CORRESPONDING AUTHOR
Applied Physics Laboratory, University of Washington, Seattle, 98105, USA
David E. Shean
Department of Civil and Environmental Engineering, University of
Washington, Seattle, 98185, USA
Benjamin E. Smith
Applied Physics Laboratory, University of Washington, Seattle, 98105, USA
Dana Floricioiu
Remote Sensing Technology Institute, German Aerospace Center (DLR), Muenchenerstr. 20, 82230 Wessling, Germany
Related authors
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, https://doi.org/10.5194/tc-12-2211-2018, 2018
Short summary
Short summary
We describe several new ice velocity maps produced using Landsat 8 and Copernicus Sentinel 1A/B data. We focus on several sites where we analyse these data in conjunction with earlier data from this project, which extend back to the year 2000. In particular, we find that Jakobshavn Isbræ began slowing substantially in 2017. The growing duration of these records will allow more robust analyses of the processes controlling fast flow and how they are affected by climate and other forcings.
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, https://doi.org/10.5194/tc-12-2087-2018, 2018
Short summary
Short summary
We present time-series of ice surface velocities on four key outlet glaciers in Greenland, derived from sequential satellite imagery acquired between October 2014 and February 2017. We demonstrate it is possible to resolve seasonal and inter-annual changes in outlet glacier with an estimated certainty of 10 %. These datasets are key for the timely identification of emerging signals of dynamic imbalance and for understanding the processes driving ice velocity change.
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415–1431, https://doi.org/10.5194/tc-12-1415-2018, https://doi.org/10.5194/tc-12-1415-2018, 2018
Short summary
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Benjamin E. Smith, Noel Gourmelen, Alexander Huth, and Ian Joughin
The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, https://doi.org/10.5194/tc-11-451-2017, 2017
Short summary
Short summary
In this paper we investigate elevation changes of Thwaites Glacier, West Antarctica, one of the main sources of excess ice discharge into the ocean. We find that in early 2013, four subglacial lakes separated by 100 km drained suddenly, discharging more than 3 km3 of water under the fastest part of the glacier in less than 6 months. Concurrent ice-speed measurements show only minor changes, suggesting that ice dynamics are not strongly sensitive to changes in water flow.
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
I. Joughin, B. E. Smith, D. E. Shean, and D. Floricioiu
The Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014, https://doi.org/10.5194/tc-8-209-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
A. P. Ahlstrøm, S. B. Andersen, M. L. Andersen, H. Machguth, F. M. Nick, I. Joughin, C. H. Reijmer, R. S. W. van de Wal, J. P. Merryman Boncori, J. E. Box, M. Citterio, D. van As, R. S. Fausto, and A. Hubbard
Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, https://doi.org/10.5194/essd-5-277-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
George Brencher, Scott Henderson, and David Shean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3196, https://doi.org/10.5194/egusphere-2024-3196, 2024
Short summary
Short summary
Glacial lakes are often dammed by moraines, which can fail, causing floods. Traditional methods of measuring moraine dam structure are not feasible for thousands of lakes. We instead developed a method to measure moraine dam movement with satellite radar data and applied this approach to the Imja Lake moraine dam in Nepal. We found that the moraine dam moved ~90 cm from 2017–2024, providing information about its internal structure. These data can help guide limited hazard remediation resources.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Sindhu Ramanath Tarekere, Lukas Krieger, Dana Floricioiu, and Konrad Heidler
EGUsphere, https://doi.org/10.5194/egusphere-2024-223, https://doi.org/10.5194/egusphere-2024-223, 2024
Short summary
Short summary
Grounding lines are geophysical features that divide ice masses on the bedrock and floating ice shelves. Their accurate location is required for calculating the mass balance of ice sheets and glaciers in Antarctica and Greenland. Human experts still manually detect them in satellite-based interferometric radar images, which is inefficient given the growing volume of data. We have developed an artificial intelligence-based automatic detection algorithm to generate Antarctic-wide grounding lines.
Benjamin Smith, Michael Studinger, Tyler Sutterley, Zachary Fair, and Thomas Neumann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-147, https://doi.org/10.5194/tc-2023-147, 2023
Revised manuscript accepted for TC
Short summary
Short summary
This study investigates errors (biases) that may result when green lasers are used to measure the elevation of glaciers and ice sheets. These biases are important because if the snow or ice on top of the ice sheet changes, it can make the elevation of the ice appear to change by the wrong amount. We measure these biases over the Greenland Ice Sheet with a laser system on an airplane, and explore how the use of satellite data can let us correct for the biases.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary
Short summary
Satellite altimeters measure the height or volume change over Earth's ice sheets, but in order to understand how that change translates into ice mass, we must account for various processes at the surface. Specifically, snowfall events generate large, transient increases in surface height, yet snow fall has a relatively low density, which means much of that height change is composed of air. This air signal must be removed from the observed height changes before we can assess ice mass change.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-281, https://doi.org/10.5194/hess-2021-281, 2021
Revised manuscript not accepted
Short summary
Short summary
Seasonally accumulated snow in the mountains forms a natural water reservoir which is challenging to measure in the rugged and remote terrain. Here, we use overlapping aerial images that model surface elevations using software to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the utility of aerial images to improve our ability to capture the amount of water held as snow in remote and inaccessible locations.
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
E. Johnson, D. Floricioiu, E. Schwalbe, R. Koschitzki, H.-G. Maas, C. Cardenas, and G. Casassa
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 125–127, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, 2020
L. Krieger, E. Johnson, and D. Floricioiu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 133–136, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, 2020
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
Wael Abdel Jaber, Helmut Rott, Dana Floricioiu, Jan Wuite, and Nuno Miranda
The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, https://doi.org/10.5194/tc-13-2511-2019, 2019
Short summary
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Short summary
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale terrain map at less than 10 m resolution, and the first with a time stamp, enabling measurements of elevation change. REMA is constructed from over 300 000 individual stereoscopic elevation models (DEMs) extracted from submeter-resolution satellite imagery. REMA is vertically registered to satellite altimetry, resulting in errors of less than 1 m over most of its area and relative uncertainties of decimeters.
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, https://doi.org/10.5194/tc-12-2211-2018, 2018
Short summary
Short summary
We describe several new ice velocity maps produced using Landsat 8 and Copernicus Sentinel 1A/B data. We focus on several sites where we analyse these data in conjunction with earlier data from this project, which extend back to the year 2000. In particular, we find that Jakobshavn Isbræ began slowing substantially in 2017. The growing duration of these records will allow more robust analyses of the processes controlling fast flow and how they are affected by climate and other forcings.
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, https://doi.org/10.5194/tc-12-2087-2018, 2018
Short summary
Short summary
We present time-series of ice surface velocities on four key outlet glaciers in Greenland, derived from sequential satellite imagery acquired between October 2014 and February 2017. We demonstrate it is possible to resolve seasonal and inter-annual changes in outlet glacier with an estimated certainty of 10 %. These datasets are key for the timely identification of emerging signals of dynamic imbalance and for understanding the processes driving ice velocity change.
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415–1431, https://doi.org/10.5194/tc-12-1415-2018, https://doi.org/10.5194/tc-12-1415-2018, 2018
Short summary
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
J. Zhao and D. Floricioiu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1593–1600, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, 2017
Benjamin E. Smith, Noel Gourmelen, Alexander Huth, and Ian Joughin
The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, https://doi.org/10.5194/tc-11-451-2017, 2017
Short summary
Short summary
In this paper we investigate elevation changes of Thwaites Glacier, West Antarctica, one of the main sources of excess ice discharge into the ocean. We find that in early 2013, four subglacial lakes separated by 100 km drained suddenly, discharging more than 3 km3 of water under the fastest part of the glacier in less than 6 months. Concurrent ice-speed measurements show only minor changes, suggesting that ice dynamics are not strongly sensitive to changes in water flow.
A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, and S. Grigsby
The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, https://doi.org/10.5194/tc-10-15-2016, 2016
Short summary
Short summary
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface (supraglacial) lakes, plays a key role in the glacial hydrological system. Multispectral remote sensing can be used to detect lakes and estimate their depth. Here, we use in situ data to assess lake depth retrieval using the recently launched Landsat 8. We validate Landsat 8-derived depths and provide suggestions for future applications. We apply our method to a case study are in Greenland for summer 2014.
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
I. M. Howat, C. Porter, M. J. Noh, B. E. Smith, and S. Jeong
The Cryosphere, 9, 103–108, https://doi.org/10.5194/tc-9-103-2015, https://doi.org/10.5194/tc-9-103-2015, 2015
Short summary
Short summary
In the summer of 2011, a large crater appeared in the surface of the Greenland Ice Sheet. It formed when a subglacial lake, equivalent to 10,000 swimming pools, catastrophically drained in less than 14 days. This is the first direct evidence that surface meltwater that drains through cracks to the bed of the ice sheet can build up in subglacial lakes over long periods of time. The sudden drainage may have been due to more surface melting and an increase in meltwater reaching the bed.
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
I. M. Howat, A. Negrete, and B. E. Smith
The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, https://doi.org/10.5194/tc-8-1509-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
D. Callens, K. Matsuoka, D. Steinhage, B. Smith, E. Witrant, and F. Pattyn
The Cryosphere, 8, 867–875, https://doi.org/10.5194/tc-8-867-2014, https://doi.org/10.5194/tc-8-867-2014, 2014
I. Joughin, B. E. Smith, D. E. Shean, and D. Floricioiu
The Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014, https://doi.org/10.5194/tc-8-209-2014, 2014
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, https://doi.org/10.5194/tc-8-15-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
O. J. Marsh, W. Rack, D. Floricioiu, N. R. Golledge, and W. Lawson
The Cryosphere, 7, 1375–1384, https://doi.org/10.5194/tc-7-1375-2013, https://doi.org/10.5194/tc-7-1375-2013, 2013
A. P. Ahlstrøm, S. B. Andersen, M. L. Andersen, H. Machguth, F. M. Nick, I. Joughin, C. H. Reijmer, R. S. W. van de Wal, J. P. Merryman Boncori, J. E. Box, M. Citterio, D. van As, R. S. Fausto, and A. Hubbard
Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, https://doi.org/10.5194/essd-5-277-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Glaciers
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81
Geometric controls of tidewater glacier dynamics
A simple parametrization of mélange buttressing for calving glaciers
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Cited articles
Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving
models, J. Glaciol., 56, 822–830, 2010.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Luethi, M. P., and
Motyka, R. J.: Ice melange dynamics and implications for terminus stability,
Jakobshavn Isbrae Greenland, J. Geophys. Res.-Earth, 115, F01005,
https://doi.org/10.1029/2009JF001405, 2010.
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf
stability to ocean forcing, Earth Planet. Sci. Lett., 409, 203–211,
https://doi.org/10.1016/j.epsl.2014.11.003, 2015.
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, 2019.
Beyer, R. A., Alexandrov, O., and McMichael, S.: The Ames Stereo Pipeline:
NASA's Open Source Software for Deriving and Processing Terrain Data, Earth
Space Sci., 5, 537–548, https://doi.org/10.1029/2018EA000409, 2018.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noel, B. P. Y., and van den Broeke, M. R.: The impact of glacier geometry
on meltwater plume structure and submarine melt in Greenland fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170, 2016.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., and Joughin, I.:
Seasonal and interannual variations in ice melange and its impact on
terminus stability, Jakobshavn Isbrae, Greenland, J. Glaciol., 61,
76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., Boettcher, M.
S., la Pena, de, S., and Howat, I.: Non-linear glacier response to calving
events, Jakobshavn Isbrae, Greenland, J. Glaciol., 65, 39–54,
https://doi.org/10.1017/jog.2018.90, 2019.
Cuffey, K. M. and Paterson, W.: The Physics of Glaciers, 4 Edn., Amsterdam,
2010.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145,
2016.
Echelmeyer, K. and Harrison, W. D.: Jakobshavns Isbræ, West Greenland:
Seasonal variations in velocity-or lack thereof, J. Glaciol., 36, 82–88,
1990.
GISTEMP Team 2019: GISS Surface Temperature Analysis (GISTEMP), version 4, available at: https://data.giss.nasa.gov/gistemp/, last access: 2 August 2019.
Gladish, C. V., Holland, D. M., and Lee, C. M.: Oceanic Boundary Conditions
for Jakobshavn Glacier. Part II: Provenance and Sources of Variability of
Disko Bay and Ilulissat Icefjord Waters, 1990–2011, J. Phys. Oceanogr., 45,
33–63, https://doi.org/10.1175/JPO-D-14-0045.1, 2015a.
Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje,
J.: Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability
and Renewal of Ilulissat Icefjord Waters, 2001–14, J. Phys. Oceanogr., 45,
3–32, https://doi.org/10.1175/JPO-D-14-0044.1, 2015b.
Hoehle, J. and Hoehle, M.: Accuracy assessment of digital elevation models
by means of robust statistical methods, ISPRS J. Photogramm.
Remote Sens., 64, 398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009.
Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Howat, I. M., Joughin, I., Tulaczyk, S., and Gogineni, S.: Rapid retreat and
acceleration of Helheim Glacier, east Greenland, Geophys. Res. Lett., 32,
L22502, https://doi.org/10.1029/2005GL024737, 2005.
Howat, I. M., Joughin, I., and Scambos, T.: Rapid Changes in Ice Discharge
from Greenland Outlet Glaciers, Science, 315, 1559–1561,
https://doi.org/10.1126/science.1138478, 2007.
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O'Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat.
Geosci., 7, 594–597, https://doi.org/10.1038/NGEO2204, 2014.
Joughin, I.: Ice-sheet velocity mapping: A combined interferometric and
speckle-tracking approach, Ann. Glaciol., 34, 195–201, 2002.
Joughin, I. R., Kwok, R., and Fahnestock, M. A.: Interferometric estimation
of three-dimensional ice-flow using ascending and descending passes, IEEE T.
Geosci. Remote, 36, 25–37, 1998.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed on
Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610,
https://doi.org/10.1038/nature03130, 2004.
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon,
T.: Seasonal speedup along the western flank of the Greenland Ice Sheet,
Science, 320, 781–783, https://doi.org/10.1126/science.1153288, 2008a.
Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R.
B., Stern, H., and Truffer, M.: Continued evolution of Jakobshavn Isbrae
following its rapid speedup, J. Geophys. Res.-Earth, 113, F04006,
https://doi.org/10.1029/2008JF001023, 2008b.
Joughin, I., Howat, I., Alley, R. B., Ekstrom, G., Fahnestock, M., Moon, T.,
Nettles, M., Truffer, M., and Tsai, V. C.: Ice-front variation and tidewater
behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland, J. Geophys. Res.-Earth, 113, F01004, https://doi.org/10.1029/2007JF000837, 2008c.
Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., and Moon, T.: Greenland
flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56,
415–430, 2010.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-sheet response to oceanic
forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012a.
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B.,
Truffer, M., and Fahnestock, M.: Seasonal to decadal scale variations in the
surface velocity of Jakobshavn Isbrae, Greenland: Observation and
model-based analysis, J. Geophys. Res., 117, F02030,
https://doi.org/10.1029/2011JF002110, 2012b.
Joughin, I., Smith, B. E., Shean, D. E., and Floricioiu, D.: Brief Communication: Further summer speedup of Jakobshavn Isbræ, The Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014, 2014.
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018.
Joughin, I., Shean, D., and Smith, B.: Data associated with: A Decade of Variability on Jakobshavn Isbrae: Ocean Temperatures Pace Speed Through Influence on Mélange Rigidity, https://doi.org/10.6069/XQS7-CD47, 2019.
Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D., and Krieger, L.:
Seasonal and interannual variabilities in terminus position, glacier
velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from
2008 to 2016, J. Geophys. Res.-Earth, 122, 1635–1652,
https://doi.org/10.1002/2016JF004133, 2017.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noel, B. P. Y., Van Den
Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two decades of
Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat. Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho,
B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas,
R., and Yungel, J.: Greenland Ice Sheet: Increased coastal thinning, Geophys. Res. Lett., 31, L24402, https://doi.org/10.1029/2004GL021533, 2004.
Krug, J., Durand, G., Gagliardini, O., and Weiss, J.: Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics, The Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015, 2015.
Lemos, A., Shepherd, A., McMillan, M., Hogg, A. E., Hatton, E., and Joughin, I.: Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery, The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, 2018.
Lloyd, J., Moros, M., Perner, K., Telford, R. J., Kuijpers, A., Jansen, E.,
and McCarthy, D.: A 100 yr record of ocean temperature control on the
stability of Jakobshavn Isbrae, West Greenland, Geology, 39, 867–870,
https://doi.org/10.1130/G32076.1, 2011.
Luckman, A. and Murray, T.: Seasonal variation in velocity before retreat of
Jakobshavn Isbrae, Greenland, Geophys. Res. Lett., 32, L08501,
https://doi.org/10.1029/2005GL022519, 2005.
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 1–7, https://doi.org/10.1038/ncomms9566, 2015.
Moller, D., Hensley, S., Sadowy, G. A., Fisher, C. D., Michel, T., Zawadzki,
M., and Rignot, E.: The Glacier and Land Ice Surface Topography
Interferometer: An Airborne Proof-of-Concept Demonstration of High-Precision
Ka-Band Single-Pass Elevation Mapping, IEEE T. Geosci. Remote, 49,
827–842, https://doi.org/10.1109/TGRS.2010.2057254, 2011.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2018.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauche, N., Dowdeswell, J. A., Dorschel, B., Fenty, I.,
Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen,
K. K., Millan, R., Mayer, L., Mouginot, J., Noel, B. P. Y., O'Cofaigh, C.,
Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo,
F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.:
BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of
Greenland From Multibeam Echo Sounding Combined With Mass Conservation,
Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017.
Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and
Howat, I.: Submarine melting of the 1985 Jakobshavn Isbrae floating tongue
and the triggering of the current retreat, J. Geophys. Res.-Earth, 116,
F01007, https://doi.org/10.1029/2009JF001632, 2011.
Mouginot, J., Rignot, E., Bjork, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA,
116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Noh, M.-J. and Howat, I. M.: The Surface Extraction from TIN based
Search-space Minimization (SETSM) algorithm, ISPRS J. Photogramm.
Remote Sens., 129, 55–76, https://doi.org/10.1016/j.isprsjprs.2017.04.019, 2017.
O'Leary, M. and Christoffersen, P.: Calving on tidewater glaciers amplified by submarine frontal melting, The Cryosphere, 7, 119–128, https://doi.org/10.5194/tc-7-119-2013, 2013.
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vankova, I.,
Dixon, T. H., Walker, R. T., and Holland, D. M.: Ice-cliff failure via
retrogressive slumping, Geology, 47, 449–452, https://doi.org/10.1130/G45880.1,
2019.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M.
J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, (2018-09-26), 26 September, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Reeh, N., Thomsen, H., Higgins, A., and Weidick, A.: Sea ice and the
stability of north and northeast Greenland floating glaciers, Ann. Glaciol.,
33, 474–480, 2001.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Rossi, C., Rodriguez Gonzalez, F., Fritz, T., Yague-Martinez, N., and
Eineder, M.: TanDEM-X calibrated Raw DEM generation, ISPRS J.
Photogramm. Remote Sens., 73, 12–20,
https://doi.org/10.1016/j.isprsjprs.2012.05.014, 2012.
Scambos, T., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate warming and break-up of ice shelves in the Antarctic Peninsula, J.
Glaciol., 46, 516–530, 2000.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28, https://doi.org/10.1029/2006JF000664,
2007.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogramm.
Remote Sens., 116, 101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Sohn, H. G., Jezek, K. C., and Van der Veen, C. J.: Jakobshavn Glacier, West
Greenland: 30 years of spaceborne observations, Geophys. Res. Lett., 25,
2699–2702, 1998.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
Change 2013 – The Physical Science Basis, in: Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Ding, Q., Plattner, G. K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Cambridge University Press, Cambridge. 2013.
Thomas, R. H.: Force-perturbation analysis of recent thinning and
acceleration of Jakobshavn Isbræ, Greenland, J. Glaciol., 50, 57–66,
2004.
Thomas, R. H., Abdalati, W., Frederick, E., Krabill, W., Manizade, S., and
Steffen, K.: Investigation of surface melting and dynamic thinning on
Jakobshavn Isbrae, Greenland, J. Glaciol., 49, 231–239, 2003.
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., and Benn, D. I.: Sensitivity of a calving glacier to ice-ocean interactions under climate change: new insights from a 3-D full-Stokes model, The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, 2019.
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N.,
Benn, D., Luckman, A., Ryan, J., Toberg, N., Slater, D., and Hubbard, A.: A
Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier, J. Geophys. Res.-Earth, 123, 410–432, https://doi.org/10.1002/2017JF004349, 2018.
Van Der Veen, C.: Fracture mechanics approach to penetration of bottom
crevasses on glaciers, Cold Reg. Sci. Technol., 27, 213–223, 1998.
Vieli, A., Jania, J., and Kolondra, L.: The retreat of a tidewater glacier:
observations and model calculations on Hansbreen, Spitsbergen, J. Glaciol.,
48, 592–600, https://doi.org/10.3189/172756502781831089, 2002.
Wagner, T. J. W., James, T. D., Murray, T., and Vella, D.: On the role of
buoyant flexure in glacier calving, Geophys. Res. Lett., 43, 232–240,
https://doi.org/10.1002/2015GL067247, 2016.
Xu, Y., Rignot, E., Fenty, I., and Menemenlis, D.: Subaqueous melting of
Store Glacier, west Greenland from three-dimensional, high-resolution
numerical modeling and ocean observations, Geophys. Res. Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013.
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and...