Articles | Volume 14, issue 4
https://doi.org/10.5194/tc-14-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Dustin Carroll
Moss Landing Marine Laboratories, San José State University, Moss Landing, CA
Thorben Dunse
Western Norway University of Applied Sciences, Sogndal, Norway
The University of Oslo, Oslo, Norway
Andy Hodson
Western Norway University of Applied Sciences, Sogndal, Norway
The University Centre in Svalbard, Longyearbyen, Svalbard
Johnna M. Holding
Department of Bioscience, Aarhus University, Silkeborg, Denmark
José L. Iriarte
Instituto de Acuicultura and Centro Dinámica de Ecosistemas
Marinos de Altas Latitudes – IDEAL, Universidad Austral de Chile, Puerto
Montt, Chile
Sofia Ribeiro
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Eric P. Achterberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Carolina Cantoni
CNR-ISMAR Istituto di Scienze Marine, Trieste, Italy
Daniel F. Carlson
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht, Germany
Melissa Chierici
The University Centre in Svalbard, Longyearbyen, Svalbard
Institute of Marine Research, Fram Centre, Tromsø, Norway
Jennifer S. Clarke
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Stefano Cozzi
CNR-ISMAR Istituto di Scienze Marine, Trieste, Italy
Agneta Fransson
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Thomas Juul-Pedersen
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Mie H. S. Winding
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Lorenz Meire
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Royal Netherlands Institute for Sea Research, and Utrecht
University, Yerseke, the Netherlands
Related authors
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
The Cryosphere, 19, 5871–5902, https://doi.org/10.5194/tc-19-5871-2025, https://doi.org/10.5194/tc-19-5871-2025, 2025
Short summary
Short summary
We model the historical and future evolution of the Jostedalsbreen ice cap in Norway, projecting substantial and largely irreversible mass loss for the 21st century, and that the ice cap will split into three parts. Further mass loss is in the pipeline, with a disappearance during the 22nd century under high emissions. Our study demonstrates an approach to model complex ice masses, highlights uncertainties due to precipitation, and calls for further research on long-term future glacier change.
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
The Cryosphere, 19, 5801–5826, https://doi.org/10.5194/tc-19-5801-2025, https://doi.org/10.5194/tc-19-5801-2025, 2025
Short summary
Short summary
Understanding glacier mass changes is crucial for assessing freshwater availability in many regions of the world. We present the Mass Balance Machine, a machine learning model that learns from sparse measurements of glacier mass change to make predictions on unmonitored glaciers. Using data from Norway, we show that the model provides accurate estimates of mass changes at different spatiotemporal scales. Our findings show that machine learning can be a valuable tool to improve such predictions.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
Biogeosciences, 22, 5809–5832, https://doi.org/10.5194/bg-22-5809-2025, https://doi.org/10.5194/bg-22-5809-2025, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Malek Belgacem, Katrin Schroeder, Marta Álvarez, Siv K. Lauvset, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data, 17, 5315–5336, https://doi.org/10.5194/essd-17-5315-2025, https://doi.org/10.5194/essd-17-5315-2025, 2025
Short summary
Short summary
The Mediterranean Sea is changing rapidly, underscoring the urgent need for high-quality datasets to quantify trends and assess impacts on biogeochemical cycles. O2 is a key indicator of marine ecosystem health and plays a central role in CO2 and nutrient cycling. We compiled a regional-scale dataset of O2 in the western Mediterranean to provide a robust observational foundation for assessing O2 variability, associated with climate change, and anomalies related to deoxygenation processes.
Louise Delaigue, Gert-Jan Reichart, Li Qiu, Eric P. Achterberg, Yasmina Ourradi, Chris Galley, André Mutzberg, and Matthew P. Humphreys
Biogeosciences, 22, 5103–5121, https://doi.org/10.5194/bg-22-5103-2025, https://doi.org/10.5194/bg-22-5103-2025, 2025
Short summary
Short summary
Our study analysed pH in ocean surface waters to understand how it fluctuates with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Anneke L. Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
The Cryosphere, 19, 3897–3914, https://doi.org/10.5194/tc-19-3897-2025, https://doi.org/10.5194/tc-19-3897-2025, 2025
Short summary
Short summary
Freshwater flows into Greenland's fjords from various sources. Solid ice discharge (e.g. calving icebergs) dominates freshwater input in the southeast and northwest. In contrast, in the southwest, runoff from the ice sheet and tundra are the most significant. Seasonal data revealed that fjord precipitation and tundra runoff contribute up to 11 % and 35 % of the monthly freshwater input, respectively. Our results provide valuable input for ocean models and for researchers studying fjord ecosystems.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Cited articles
Achterberg, E. P., Steigenberger, S., Marsay, C. M., Lemoigne, F. A. C.,
Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A.,
and Tanhua, T.: Iron Biogeochemistry in the High Latitude North Atlantic
Ocean, Sci. Rep., 8, 1283, https://doi.org/10.1038/s41598-018-19472-1, 2018.
Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., and Box, J.
E.: Abrupt shift in the observed runoff from the southwestern Greenland ice
sheet, Sci. Adv., 3, e1701169, https://doi.org/10.1126/sciadv.1701169, 2017.
Andersen, O. G. N.: Primary production, illumination and hydrography in
Jørgen Brønlund Fjord, North Greenland, in: Meddelelser om Grønland,
Nyt Nordisk Forlag, København, 1977.
Annett, A. L., Skiba, M., Henley, S. F., Venables, H. J., Meredith, M. P.,
Statham, P. J., and Ganeshram, R. S.: Comparative roles of upwelling and
glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula, Mar.
Chem., 176, 21–33, https://doi.org/10.1016/j.marchem.2015.06.017, 2015.
Annett, A. L., Fitzsimmons, J. N., Séguret, M. J. M., Lagerström,
M., Meredith, M. P., Schofield, O., and Sherrell, R. M.: Controls on
dissolved and particulate iron distributions in surface waters of the
Western Antarctic Peninsula shelf, Mar. Chem., 196, 81–97,
https://doi.org/10.1016/j.marchem.2017.06.004, 2017.
Arendt, K. E., Nielsen, T. G., Rysgaard, S., and Tonnesson, K.: Differences
in plankton community structure along the Godthabsfjord, from the Greenland
Ice Sheet to offshore waters, Mar. Ecol. Prog. Ser., 401, 49–62,
https://doi.org/10.3354/meps08368, 2010.
Arendt, K. E., Dutz, J., Jonasdottir, S. H., Jung-Madsen, S., Mortensen, J.,
Moller, E. F., and Nielsen, T. G.: Effects of suspended sediments on copepods
feeding in a glacial influenced sub-Arctic fjord, J. Plankton Res., 33,
1526–1537, https://doi.org/10.1093/plankt/fbr054, 2011.
Arendt, K. E., Juul-Pedersen, T., Mortensen, J., Blicher, M. E., and
Rysgaard, S.: A 5-year study of seasonal patterns in mesozooplankton
community structure in a sub-Arctic fjord reveals dominance of Microsetella
norvegica (Crustacea, Copepoda), J. Plankton Res., 35, 105–120,
https://doi.org/10.1093/plankt/fbs087, 2013.
Arimitsu, M. L., Piatt, J. F., Madison, E. N., Conaway, J. S., and
Hillgruber, N.: Oceanographic gradients and seabird prey community dynamics
in glacial fjords, Fish. Oceanogr., 21, 148–169,
https://doi.org/10.1111/j.1365-2419.2012.00616.x, 2012.
Arimitsu, M. L., Piatt, J. F., and Mueter, F.: Influence of glacier runoff on
ecosystem structure in Gulf of Alaska fjords, Mar. Ecol. Prog. Ser., 560,
19–40, https://doi.org/10.3354/meps11888, 2016.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm,
Å. K., Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.: Melting
glaciers stimulate large summer phytoplankton blooms in southwest Greenland
waters, Geophys. Res. Lett., 44, 6278–6285, https://doi.org/10.1002/2017GL073583,
2017.
Azetsu-Scott, K. and Syvitski, J. P. M.: Influence of melting icebergs on
distribution, characteristics and transport of marine particles in an East
Greenland fjord, J. Geophys. Res., 104, 5321, https://doi.org/10.1029/1998JC900083,
1999.
Baggesen, C., Moestrup, Ø., and Daugbjer N.: Molecular phylogeny and toxin
profiles of Alexandrium tamarense (Lebour) Balech (Dinophyceae) from the
west coast of Greenland, Harmful Algae, 19, 108–116,
https://doi.org/10.1016/j.hal.2012.06.005, 2012.
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M.,
van den Broeke, M. R., and Noel, B.: Land Ice Freshwater Budget of the Arctic
and North Atlantic Oceans: 1. Data, Methods, and Results, J. Geophys. Res.-Ocean., 123, 1827–1837, https://doi.org/10.1002/2017JC013605, 2018.
Barker, J. D., Sharp, M. J., Fitzsimons, S. J., and Turner, R. J.: Abundance
and dynamics of dissolved organic carbon in glacier systems, Arct. Antarct.
Alp. Res., 38, 163–172,
https://doi.org/10.1657/1523-0430(2006)38[163:aadodo]2.0.co;2, 2006.
Beaird, N. L., Straneo, F., and Jenkins, W.: Export of strongly diluted
Greenland meltwater from a major glacial fjord, Geophys. Res. Lett., 43, 4163–4170,
https://doi.org/10.1029/2018GL077000, 2018.
Beaton, A. D., Cardwell, C. L., Thomas, R. S., Sieben, V. J., Legiret, F.
E., Waugh, E. M., Statham, P. J., Mowlem, M. C., and Morgan, H.: Lab-on-Chip
Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters,
Environ. Sci. Technol., 46, 9548–9556, https://doi.org/10.1021/es300419u, 2012.
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., and Feely,
R. A.: Dissolution Dominating Calcification Process in Polar Pteropods Close
to the Point of Aragonite Undersaturation, PLoS One, 9, e109183,
https://doi.org/10.1371/journal.pone.0109183, 2014.
Bendtsen, J., Mortensen, J., and Rysgaard, S.: Seasonal surface layer
dynamics and sensitivity to runoff in a high Arctic fjord (Young
Sound/Tyrolerfjord, 74∘ N), J. Geophys. Res.-Ocean., 119,
6461–6478, https://doi.org/10.1002/2014JC010077, 2014.
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for
glacial ice melt in a west Greenland tidewater outlet glacier fjord: The
role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095, https://doi.org/10.1002/2015GL063846, 2015.
Benetti, M., Reverdin, G., Clarke, J. S., Tynan, E., Holliday, N. P.,
Torres-Valdes, S., Lherminier, P., and Yashayaev, I.: Sources and
distribution of fresh water around Cape Farewell in 2014, J. Geophys. Res.-Ocean., 124, 9404–9416, https://doi.org/10.1029/2019JC015080, 2019.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P.
B., and Charette, M. A.: Greenland meltwater as a significant and potentially
bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278,
https://doi.org/10.1038/ngeo1746, 2013a.
Bhatia, M. P., Das, S. B., Xu, L., Charette, M. A., Wadham, J. L., and
Kujawinski, E. B.: Organic carbon export from the Greenland ice sheet,
Geochim. Cosmochim. Acta, 109, 329–344, https://doi.org/10.1016/j.gca.2013.02.006,
2013b.
Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A., and Kujawinski, E. B.: Molecular characterization of dissolved organic matter associated with the Greenland ice sheet, Geochim. Cosmochim. Acta, 74, 3768–3784, https://doi.org/10.1016/j.gca.2010.03.035, 2010.
Blain, S., Treguer, P., Belviso, S., Bucciarelli, E., Denis, M., Desabre,
S., Fiala, M., Jezequel, V. M., Le Fevre, J., Mayzaud, P., Marty, J. C., and
Razouls, S.: A biogeochemical study of the island mass effect in the context
of the iron hypothesis: Kerguelen Islands, Southern Ocean, Deep. Res. Part
I, 48, 163–187, 2001.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change, J. Geophys. Res.-Earth Surf., 119,
717–730, 2014.
Boone, W., Rysgaard, S., Carlson, D. F., Meire, L., Kirillov, S., Mortensen,
J., Dmitrenko, I., Vergeynst, L., and Sejr, M. K.: Coastal Freshening
Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study
From 2003 to 2015, Geophys. Res. Lett., 45, 2726–2733,
https://doi.org/10.1002/2017GL076591, 2018.
Bowie, A. R., van der Merwe, P., Quéroué, F., Trull, T., Fourquez, M., Planchon, F., Sarthou, G., Chever, F., Townsend, A. T., Obernosterer, I., Sallée, J.-B., and Blain, S.: Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2, Biogeosciences, 12, 4421–4445, https://doi.org/10.5194/bg-12-4421-2015, 2015.
Box, J. E.: Survey of Greenland instrumental temperature records:
1873–2001, Int. J. Climatol., 22, 1829–1847, https://doi.org/10.1002/joc.852, 2002.
Boyle, E. A., Edmond, J. M., and Sholkovitz, E. R.: Mechanism of iron removal
in estuaries, Geochim. Cosmochim. Acta, 41, 1313–1324,
https://doi.org/10.1016/0016-7037(77)90075-8, 1977.
Brown, G. H., Sharp, M. J., Tranter, M., Gurnell, A. M., and Nienow, P. W.:
Impact of post-mixing chemical reactions on the major ion chemistry of bulk
meltwaters draining the haut glacier d'arolla, valais, Switzerland, Hydrol.
Process., 8, 465–480, https://doi.org/10.1002/hyp.3360080509, 1994.
Brown, M. T., Lippiatt, S. M., and Bruland, K. W.: Dissolved aluminum,
particulate aluminum, and silicic acid in northern Gulf of Alaska coastal
waters: Glacial/riverine inputs and extreme reactivity, Mar. Chem.,
122, 160–175, https://doi.org/10.1016/j.marchem.2010.04.002, 2010.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of an
oceanic gyre, Nature, 551, 242–246, https://doi.org/10.1038/nature24063, 2017.
Bucciarelli, E., Blain, S., and Treguer, P.: Iron and manganese in the wake
of the Kerguelen Islands (Southern Ocean), Mar. Chem., 73, 21–36, 2001.
Bullard, J. E.: Contemporary glacigenic inputs to the dust cycle, Earth
Surf. Process. Landf., 38, 71–89, https://doi.org/10.1002/esp.3315, 2013.
Cable, S., Christiansen, H. H., Westergaard-Nielsen, A., Kroon, A., and
Elberling, B.: Geomorphological and cryostratigraphical analyses of the
Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans,
Geomorphology, 303, 504–523, https://doi.org/10.1016/j.geomorph.2017.11.003, 2018.
Calleja, M. L., Kerhervé, P., Bourgeois, S., Kędra, M., Leynaert,
A., Devred, E., Babin, M., and Morata, N.: Effects of increase glacier
discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high
Arctic fjord, Prog. Oceanogr., 159, 195–210,
https://doi.org/10.1016/j.pocean.2017.07.005, 2017.
Cantoni, C., Hopwood, M., Clarke, J., Chiggiato, J., Achterberg, E. P., and
Cozzi, S.: Hydrological, biogeochemical and carbonate system data in coastal
waters and in glacier drainage systems in Kongsfjorden (Svalbard), during
July–August 2016, Data set, PANGAEA, https://doi.org/10.1594/PANGAEA.904171, 2019.
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M., and Charette, M. A.:
Nutrient release to oceans from buoyancy-driven upwelling at Greenland
tidewater glaciers, Nat. Geosci., 12, 34–39, https://doi.org/10.1038/s41561-018-0268-4,
2019.
Carlson, D. F. and Rysgaard, S.: Adapting open-source drone autopilots for
real-time iceberg observations, MethodsX, 5, 1059–1072,
https://doi.org/10.1016/j.mex.2018.09.003, 2018.
Carlson, D. F., Boone, W., Meire, L., Abermann, J., and Rysgaard, S.: Bergy
Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed
by the Expendable Ice Tracker, Front. Mar. Sci., 4, 276,
https://doi.org/10.3389/fmars.2017.00276, 2017.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Modeling Turbulent Subglacial Meltwater Plumes:
Implications for Fjord-Scale Buoyancy-Driven Circulation, J. Phys.
Oceanogr., 45, 2169–2185, https://doi.org/10.1175/JPO-D-15-0033.1, 2015.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170,
2016.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier
fjords, J. Geophys. Res.-Ocean., 122, 6611–6629, https://doi.org/10.1002/2017JC012962, 2017.
Carroll, D., Sutherland, D. A., Curry, B., Nash, J. D., Shroyer, E. L.,
Catania, G. A., Stearns, L. A., Grist, J. P., Lee, C. M., and de Steur, L.:
Subannual and Seasonal Variability of Atlantic-Origin Waters in Two Adjacent
West Greenland Fjords, J. Geophys. Res.-Ocean., 123, 6670–6687,
https://doi.org/10.1029/2018JC014278, 2018.
Cauvy-Fraunié, S. and Dangles, O.: A global synthesis of biodiversity
responses to glacier retreat, Nat. Ecol. Evol., 3, 1675–1685,
https://doi.org/10.1038/s41559-019-1042-8, 2019.
Cauwet, G. and Sidorov, I.: The biogeochemistry of Lena River: organic
carbon and nutrients distribution, Mar. Chem., 53, 211–227,
https://doi.org/10.1016/0304-4203(95)00090-9, 1996.
Charette, M. A. and Sholkovitz, E. R.: Oxidative precipitation of
groundwater-derived ferrous iron in the subterranean estuary of a coastal
bay, Geophys. Res. Lett., 29, 85, https://doi.org/10.1029/2001GL014512, 2002.
Charette, M. A., Lam, P. J., Lohan, M. C., Kwon, E. Y., Hatje, V., Jeandel,
C., Shiller, A. M., Cutter, G. A., Thomas, A., Boyd, P. W., Homoky, W. B.,
Milne, A., Thomas, H., Andersson, P. S., Porcelli, D., Tanaka, T., Geibert,
W., Dehairs, F., and Garcia-Orellana, J.: Coastal ocean and shelf-sea
biogeochemical cycling of trace elements and isotopes: lessons learned from
GEOTRACES, Philos. Trans. R. Soc. A, 374,
20160076, https://doi.org/10.1098/rsta.2016.0076, 2016.
Chierici, M. and Fransson, A.: Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421–2431, https://doi.org/10.5194/bg-6-2421-2009, 2009.
Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., Box, J. E., and
Reeh, N.: Sediment plume response to surface melting and supraglacial lake
drainages on the Greenland ice sheet, J. Glaciol., 55, 1072–1082,
https://doi.org/10.3189/002214309790794904, 2009.
Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., and Box, J. E.: Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet, The Cryosphere, 6, 1–19, https://doi.org/10.5194/tc-6-1-2012, 2012.
Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877–1882, https://doi.org/10.5194/bg-6-1877-2009, 2009.
Comeau, S., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Response of
the Arctic Pteropod Limacina helicina to Projected Future Environmental
Conditions, PLoS One, 5, e11362, https://doi.org/10.1371/journal.pone.0011362, 2010.
Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R. L., Verheggen, B.,
Maibach, E. W., Carlton, J. S., Lewandowsky, S., Skuce, A. G., and Green, S.
A.: Consensus on consensus: a synthesis of consensus estimates on
human-caused global warming, Environ. Res. Lett., 11, 48002, https://doi.org/10.1088/1748-9326/11/4/048002, 2016.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J.
J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers
(δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,
Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Coupel, P., Ruiz-Pino, D., Sicre, M. A., Chen, J. F., Lee, S. H.,
Schiffrine, N., Li, H. L., and Gascard, J. C.: The impact of freshening on
phytoplankton production in the Pacific Arctic Ocean, Prog. Oceanogr., 131,
113–125, https://doi.org/10.1016/j.pocean.2014.12.003, 2015.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the
impact of glacial runoff on fjord circulation and submarine melt rate using
a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Ocean., 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015.
Crusius, J., Schroth, A. W., Gasso, S., Moy, C. M., Levy, R. C., and Gatica,
M.: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and
meteorological controls and their importance as a source of bioavailable
iron, Geophys. Res. Lett., 38, 06602, https://doi.org/10.1029/2010gl046573, 2011.
Crusius, J., Schroth, A. W., Resing, J. A., Cullen, J., and Campbell, R. W.:
Seasonal and spatial variabilities in northern Gulf of Alaska surface water
iron concentrations driven by shelf sediment resuspension, glacial
meltwater, a Yakutat eddy, and dust, Global Biogeochem. Cy., 31,
942–960, https://doi.org/10.1002/2016GB005493, 2017.
Csank, A. Z., Czimczik, C. I., Xu, X., and Welker, J. M.: Seasonal patterns
of riverine carbon sources and export in NW Greenland, J. Geophys. Res.-Biogeosci., 124, 840–856, https://doi.org/10.1029/2018JG004895, 2019.
Cushman-Roisin, B., Asplin, L., and Svendsen, H.: Upwelling in broad fjords,
Cont. Shelf Res., 14, 1701–1721, https://doi.org/10.1016/0278-4343(94)90044-2,
1994.
De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., and
Navarro, F.: Surface emergence of glacial plumes determined by fjord
stratification, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2019-264, in review, 2020.
Debaar, H. J. W.: VonLiebig Law of the minimum and plankton ecology
(1899–1991), Prog. Oceanogr., 33, 347–386,
https://doi.org/10.1016/0079-6611(94)90022-1, 1994.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants
for the dissociation of carbonic acid in seawater media, Deep Sea Res. Part
A, 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf
ecosystem of the Arctic Ocean: a review, Mar. Chem., 83, 103–120,
https://doi.org/10.1016/S0304-4203(03)00105-1, 2003.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Ducklow, H. W., Vernet, M., and Prezelin, B.: Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991–2019, ver 8, Environmental Data Initiative, https://doi.org/10.6073/pasta/9611089f65d3cbd0801204d174eee947, 2017.
Dugdale, R. C., Wilkerson, F. P., and Minas, H. J.: The role of a silicate
pump in driving new production, Deep. Res. I, 42, 697–719, 1995.
Egge, J. K. and Aksnes, D. L.: Silicate as regulating nutrient in
phytoplankton competition, Mar. Ecol. Prog. Ser., 83, 281–289, 1992.
Egge, J. K. and Heimdal, B. R.: Blooms of phytoplankton including Emiliania
huxleyi (Haptophyta). Effects of nutrient supply in different N: P ratios,
Sarsia, 79, 333–348, https://doi.org/10.1080/00364827.1994.10413565, 1994.
Ellegaard, M. and Ribeiro, S.: The long-term persistence of phytoplankton
resting stages in aquatic `seed banks,' Biol. Rev., 93, 166–183,
https://doi.org/10.1111/brv.12338, 2018.
Emmerton, C. A., Lesack, L. F. W., and Vincent, W. F.: Nutrient and organic
matter patterns across the Mackenzie River, estuary and shelf during the
seasonal recession of sea-ice, J. Mar. Syst., 74, 741–755, https://doi.org/10.1016/j.jmarsys.2007.10.001, 2008.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Enderlin, E. M., Carrigan, C. J., Kochtitzky, W. H., Cuadros, A., Moon, T., and Hamilton, G. S.: Greenland iceberg melt variability from high-resolution satellite observations, The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, 2018.
Ericson, Y., Falck, E., Chierici, M., Fransson, A., and Kristiansen, S.:
Marine CO2 system variability in a high arctic tidewater-glacier fjord
system, Tempelfjorden, Svalbard, Cont. Shelf Res., 181, 1–13,
https://doi.org/10.1016/j.csr.2019.04.013, 2019.
Etherington, L. L. and Hooge, P. N.: Oceanography of Glacier Bay, Alaska:
Implications for biological patterns in a glacial fjord estuary, Estuar. Coast., 30, 927–944, 2007.
Evans, W., Mathis, J. T., and Cross, J. N.: Calcium carbonate corrosivity in an Alaskan inland sea, Biogeosciences, 11, 365–379, https://doi.org/10.5194/bg-11-365-2014, 2014.
Fransson, A. and Chierici, M.: Marine CO2 system data for the Svalbard
fjord Kongsfjorden and the West-Spitsbergen shelf in July 2012–2014, Data
set]. Norwegian Polar Institute, https://doi.org/10.21334/npolar.2019.e53eae53, 2019.
Fransson, A., Chierici, M., Nomura, D., Granskog, M. A., Kristiansen, S.,
Martma, T., and Nehrke, G.: Effect of glacial drainage water on the CO2
system and ocean acidification state in an Arctic tidewater-glacier fjord
during two contrasting years, J. Geophys. Res.-Ocean., 120, 2413–2429,
https://doi.org/10.1002/2014JC010320, 2015.
Fransson, A., Chierici, M., Hop, H., Findlay, H. S., Kristiansen, S., and
Wold, A.: Late winter-to-summer change in ocean acidification state in
Kongsfjorden, with implications for calcifying organisms, Polar Biol.,
39, 1841–1857, https://doi.org/10.1007/s00300-016-1955-5, 2016.
Fried, M. J., Catania, G. A., Stearns, L. A., Sutherland, D. A.,
Bartholomaus, T. C., Shroyer, E., and Nash, J.: Reconciling drivers of
seasonal terminus advance and retreat at 13 central west Greenland tidewater
glaciers, J. Geophys. Res.-Earth, 123, 1590–1607, 2018.
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G. E., Canepa, A.,
Wölfl, A.-C., Hass, C. H., Williams, G. N., and Schloss, I. R.: Glacial
melting: an overlooked threat to Antarctic krill, Sci. Rep., 6, 27234,
https://doi.org/10.1038/srep27234, 2016.
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuroczy, C.-E., De Baar, H.
J. W., Mills, M. M., van Dijken, G. L., van Haren, H., and Arrigo, K. R.:
Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea
(Southern Ocean): Iron biogeochemistry, Deep. Res. Part Ii, 71–76, 16–31, https://doi.org/10.1016/j.dsr2.2012.03.007, 2012.
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H.,
and Buylaert, J.-P.: Late Quaternary sedimentation and permafrost
development in a Svalbard fjord-valley, Norwegian high Arctic,
Sedimentology, 65, 2531–2558, https://doi.org/10.1111/sed.12476, 2018.
Gladish, C. V, Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje,
J.: Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability
and Renewal of Ilulissat Icefjord Waters, 2001–14, J. Phys. Oceanogr.,
45, 3–32, https://doi.org/10.1175/JPO-D-14-0044.1, 2014.
Gledhill, M. and Buck, K. N.: The organic complexation of iron in the marine
environment: a review, Front. Microbiol., 3, 69,
https://doi.org/10.3389/fmicb.2012.00069, 2012.
Glud, R. N., Risgaard-Petersen, M., Thamdrup, B., Fossing, H., and Rysgaard,
S.: Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE
Greenland), Mar. Ecol. Prog. Ser., 206, 59–71, https://doi.org/10.3354/meps206059,
2000.
González-Bergonzoni, I., L., J. K., Anders, M., Frank, L., Erik, J., and
A., D. T.: Small birds, big effects: the little auk (Alle alle) transforms
high Arctic ecosystems, P. Roy. Soc. B, 284, 20162572,
https://doi.org/10.1098/rspb.2016.2572, 2017.
Grand, M. M., Clinton-Bailey, G. S., Beaton, A. D., Schaap, A. M., Johengen,
T. H., Tamburri, M. N., Connelly, D. P., Mowlem, M. C., and Achterberg, E.
P.: A Lab-On-Chip Phosphate Analyzer for Long-term In Situ Monitoring at
Fixed Observatories: Optimization and Performance Evaluation in Estuarine
and Oligotrophic Coastal Waters, Front. Mar. Sci., 4, 255,
https://doi.org/10.3389/fmars.2017.00255, 2017.
Grand, M. M., Laes-Huon, A., Fietz, S., Resing, J. A., Obata, H., Luther, G.
W., Tagliabue, A., Achterberg, E. P., Middag, R., Tovar-Sánchez, A., and
Bowie, A. R.: Developing Autonomous Observing Systems for Micronutrient
Trace Metals, Front. Mar. Sci., 6, 35, https://doi.org/10.3389/fmars.2019.00035, 2019.
Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M. A., Hop,
H., Kauko, H. M., Kristiansen, S., Myhre, P. I., Pavlov, A. K., Pramanik,
A., Tatarek, A., Torsvik, T., Wiktor, J. M., Wold, A., Wulff, A., Steen, H.,
and Assmy, P.: Tidewater Glaciers and Bedrock Characteristics Control the
Phytoplankton Growth Environment in a Fjord in the Arctic, Front. Mar. Sci.,
6, 254, https://doi.org/10.3389/fmars.2019.00254, 2019.
Harrison, W. G., Platt, T., and Irwin, B.: Primary Production and Nutrient
Assimilation by Natural Phytoplankton Populations of the Eastern Canadian
Arctic, Can. J. Fish. Aquat. Sci., 39, 335–345, https://doi.org/10.1139/f82-046,
1982.
Hart, T. J.: Discovery Reports, Discov. Reports, VIII, 1–268, 1934.
Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A.,
Simmons, S.-L., Chandler, D., Tedstone, A., and Nienow, P.: The Greenland Ice
Sheet as a hot spot of phosphorus weathering and export in the Arctic,
Global Biogeochem. Cy., 30, 191–210, https://doi.org/10.1002/2015GB005237, 2016.
Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G.,
Statham, P. J., Tedstone, A., Nienow, P., Lee, K., and Telling, J.: Ice
sheets as a significant source of highly reactive nanoparticulate iron to
the oceans, Nat. Commun., 5, 3929, https://doi.org/10.1038/ncomms4929, 2014.
Hawkings, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M.,
Tedstone, A., Nienow, P., and Raiswell, R.: Ice sheets as a missing source of
silica to the polar oceans, Nat. Commun., 8, 14198, https://doi.org/10.1038/ncomms14198,
2017.
Hegseth, E. N. and Tverberg, V.: Effect of Atlantic water inflow on timing
of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden,
Svalbard), J. Mar. Syst., 113–114, 94–105,
https://doi.org/10.1016/j.jmarsys.2013.01.003, 2013.
Helly, J. J., Kaufmann, R. S., Stephenson Jr., G. R., and Vernet, M.:
Cooling, dilution and mixing of ocean water by free-drifting icebergs in the
Weddell Sea, Deep. Res. Part I, 58,
1346–1363, https://doi.org/10.1016/j.dsr2.2010.11.010, 2011.
Hendry, K. R., Huvenne, V. A. I., Robinson, L. F., Annett, A., Badger, M.,
Jacobel, A. W., Ng, H. C., Opher, J., Pickering, R. A., Taylor, M. L.,
Bates, S. L., Cooper, A., Cushman, G. G., Goodwin, C., Hoy, S., Rowland, G.,
Samperiz, A., Williams, J. A., Achterberg, E. P., Arrowsmith, C.,
Brearley, J. A., Henley, S. F., Krause, J. W., Leng, M. J., Li, T., McManus, J.
F., Meredith, M. P., Perkins, R., and Woodward, E. M. S.: The biogeochemical
impact of glacial meltwater from Southwest Greenland, Prog. Oceanogr., 176,
102126, https://doi.org/10.1016/j.pocean.2019.102126, 2019.
Henson, S., Le Moigne, F., and Giering, S.: Drivers of Carbon Export
Efficiency in the Global Ocean, Global Biogeochem. Cy., 33, 891–903,
https://doi.org/10.1029/2018GB006158, 2019.
Hessen, D. O., Carroll, J., Kjeldstad, B., Korosov, A. A., Pettersson, L.
H., Pozdnyakov, D., and Sørensen, K.: Input of organic carbon as
determinant of nutrient fluxes, light climate and productivity in the Ob and
Yenisey estuaries, Estuar. Coast Shelf Sci., 88, 53-62,
https://doi.org/10.1016/j.ecss.2010.03.006, 2010.
Hewitt, I. J.: Subglacial Plumes, Annu. Rev. Fluid Mech., 52, 145–169,
https://doi.org/10.1146/annurev-fluid-010719-060252, 2020.
Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S., and Reigstad, M.:
Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton,
protozoans and primary production, Polar Biol., 35, 191–203,
https://doi.org/10.1007/s00300-011-1053-7, 2012.
Hodson, A., Mumford, P., and Lister, D.: Suspended sediment and phosphorus in
proglacial rivers: bioavailability and potential impacts upon the P status
of ice-marginal receiving waters, Hydrol. Process., 18, 2409–2422,
https://doi.org/10.1002/hyp.1471, 2004.
Hodson, A., Nowak, A., and Christiansen, H.: Glacial and periglacial
floodplain sediments regulate hydrologic transfer of reactive iron to a high
arctic fjord, Hydrol. Process., 30, 1219–1229, https://doi.org/10.1002/hyp.10701, 2016.
Hodson, A., Nowak, A., Sabacka, M., Jungblut, A., Navarro, F., Pearce, D.,
Ávila-Jiménez, M. L., Convey, P., and Vieira, G.: Climatically
sensitive transfer of iron to maritime Antarctic ecosystems by surface
runoff, Nat. Commun., 8, 14499, https://doi.org/10.1038/ncomms14499, 2017.
Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M.: The High Arctic
glacial ecosystem: New insights from nutrient budgets, Biogeochemistry, 72, 233–256,
https://doi.org/10.1007/s10533-004-0362-0, 2005.
Höfer, J., Giesecke, R., Hopwood, M. J., Carrera, V., Alarcón, E.,
and González, H. E.: The role of water column stability and wind mixing
in the production/export dynamics of two bays in the Western Antarctic
Peninsula, Prog. Oceanogr., 174, 105–116, https://doi.org/10.1016/j.pocean.2019.01.005,
2019.
Holding, J. M., Duarte, C. M., Delgado-Huertas, A., Soetaert, K., Vonk, J.
E., Agustí, S., Wassmann, P., and Middelburg, J. J.: Autochthonous and
allochthonous contributions of organic carbon to microbial food webs in
Svalbard fjords, Limnol. Oceanogr., 62, 1307–1323, https://doi.org/10.1002/lno.10526, 2017.
Holding, J. M., Markager, S., Juul-Pedersen, T., Paulsen, M. L., Møller, E. F., Meire, L., and Sejr, M. K.: Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off, Biogeosciences, 16, 3777–3792, https://doi.org/10.5194/bg-16-3777-2019, 2019.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast.,
35, 369–382, https://doi.org/10.1007/s12237-011-9386-6, 2011.
Honjo, S. and Manganini, S. J.: Annual biogenic particle fluxes to the
interior of the North Atlantic Ocean; studied at 34∘ N
21∘ W and 48∘ N 21∘ W, Deep Sea Res. Part II, 40, 587–607, https://doi.org/10.1016/0967-0645(93)90034-K,
1993.
Hood, E. and Berner, L.: Effects of changing glacial coverage on the
physical and biogeochemical properties of coastal streams in southeastern
Alaska, J. Geophys. Res., 114, G03001, https://doi.org/10.1029/2009jg000971, 2009.
Hood, E. and Scott, D.: Riverine organic matter and nutrients in southeast
Alaska affected by glacial coverage, Nat. Geosci., 1, 583–587,
https://doi.org/10.1038/ngeo280, 2008.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R.,
D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile
organic matter to the marine environment, Nature, 462, 1044–1047,
https://doi.org/10.1038/nature08580, 2009.
Hood, E., Battin, T. J., Fellman, J., O'neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets, Nat.
Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C.,
Kwasniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Wlodarska-Kowalczuk,
M., Lydersen, C., Weslawski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey,
R. J. G., Lønne, O. J., Zajaczkowski, M., Falk-Petersen, S., Kendall, M.,
Wängberg, S.-Å., Bischof, K., Voronkov, A. Y., Kovaltchouk, N. A.,
Wiktor, J., Poltermann, M., Prisco, G., Papucci, C., and Gerland, S.: The
marine ecosystem of Kongsfjorden, Svalbard, Polar Res., 21, 167–208, 2002.
Hop, H., Assmy, P., Wold, A., Sundfjord, A., Daase, M., Duarte, P.,
Kwasniewski, S., Gluchowska, M., Wiktor, J. M., Tatarek, A., Wiktor, J.,
Kristiansen, S., Fransson, A., Chierici, M., and Vihtakari, M.: Pelagic
Ecosystem Characteristics Across the Atlantic Water Boundary Current From
Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014),
Front. Mar. Sci., 6, 181, https://doi.org/10.3389/fmars.2019.00181, 2019.
Hoppe, H.-G.: Phosphatase activity in the sea, Hydrobiologia, 493,
187–200, https://doi.org/10.1023/A:1025453918247, 2003.
Hopwood, M. J., Connelly, D. P., Arendt, K. E., Juul-Pedersen, T.,
Stinchcombe, M. C., Meire, L., Esposito, M., and Krishna, R.: Seasonal
changes in Fe along a glaciated Greenlandic fjord, Front. Earth Sci., 4, 15,
https://doi.org/10.3389/feart.2016.00015, 2016.
Hopwood, M. J., Cantoni, C., Clarke, J. S., Cozzi, S., and Achterberg, E. P.:
The heterogeneous nature of Fe delivery from melting icebergs, Geochem.
Perspect. Lett., 3, 200–209, https://doi.org/10.7185/geochemlet.1723, 2017.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J.,
Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine
productivity to increased meltwater discharge around Greenland, Nat.
Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M., Harland, R., and
Cage, A. G.: Fjord systems and archives: a review, Geol. Soc. London, Spec.
Publ., 344, 5–15, https://doi.org/10.1144/SP344.2, 2010.
Hudson, B., Overeem, I., McGrath, D., Syvitski, J. P. M., Mikkelsen, A., and Hasholt, B.: MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords, The Cryosphere, 8, 1161–1176, https://doi.org/10.5194/tc-8-1161-2014, 2014.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x,
2018.
Hyacinthe, C. and Van Cappellen, P.: An authigenic iron phosphate phase
in estuarine sediments: composition, formation and chemical reactivity, Mar.
Chem., 91, 227–251, 2004.
Iriarte, J. L., Pantoja, S., and Daneri, G.: Oceanographic Processes in
Chilean Fjords of Patagonia: From small to large-scale studies, Prog.
Oceanogr., 129, 1–7, https://doi.org/10.1016/j.pocean.2014.10.004, 2014.
Iversen, K. R. and Seuthe, L.: Seasonal microbial processes in a
high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria,
picoplankton and nanoflagellates, Polar Biol., 34, 731–749,
https://doi.org/10.1007/s00300-010-0929-2, 2011.
Iversen, M. H. and Robert, M. L.: Ballasting effects of smectite on
aggregate formation and export from a natural plankton community, Mar.
Chem., 175, 18–27, https://doi.org/10.1016/j.marchem.2015.04.009, 2015.
Jackson, R. H., Straneo, F., and Sutherland, D. A.: Externally forced
fluctuations in ocean temperature at Greenland glaciers in non-summer
months, Nat. Geosci., 7, 503–508, https://doi.org/10.1038/ngeo2186, 2014.
Jackson, R. H., Shroyer, E. L., Nash, J. D., Sutherland, D. A., Carroll, D.,
Fried, M. J., Catania, G. A., Bartholomaus, T. C., and Stearns, L. A.:
Near-glacier surveying of a subglacial discharge plume: Implications for
plume parameterizations, Geophys. Res. Lett., 44, 6886–6894,
https://doi.org/10.1002/2017GL073602, 2017.
Jackson, R. H., Lentz, S. J., and Straneo, F.: The Dynamics of Shelf Forcing
in Greenlandic Fjords, J. Phys. Oceanogr., 48, 2799–2827,
https://doi.org/10.1175/JPO-D-18-0057.1, 2018.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice
Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Jensen, H. M., Pedersen, L., Burmeister, A., and Winding Hansen, B.: Pelagic
primary production during summer along 65 to 72∘ N off West
Greenland, Polar Biol., 21, 269–278, https://doi.org/10.1007/s003000050362, 1999.
Johnson, H. L., Münchow, A., Falkner, K. K., and Melling, H.: Ocean
circulation and properties in Petermann Fjord, Greenland, J. Geophys. Res.-Ocean., 116, C01003, https://doi.org/10.1029/2010JC006519, 2011.
Joli, N., Gosselin, M., Ardyna, M., Babin, M., Onda D. F., Tremblay,
J.-É., and Lovejoy, C.: Need for focus on microbial species following ice
melt and changing freshwater regimes in a Janus Arctic Gateway, Sci. Rep.,
8, 9405, https://doi.org/10.1038/s41598-018-27705-6, 2018.
Jones, I. W., Munhoven, G., Tranter, M., Huybrechts, P., and Sharp, M. J.:
Modelled glacial and non-glacial , Si and Ge fluxes since the LGM:
little potential for impact on atmospheric CO2 concentrations and a
potential proxy of continental chemical erosion, the marine Ge∕Si ratio,
Global Planet. Chang., 33, 139–153, https://doi.org/10.1016/S0921-8181(02)00067-X, 2002.
Jouvet, G., Weidmann, Y., Kneib, M., Detert, M., Seguinot, J., Sakakibara,
D.. and Sugiyama, S.: Short-lived ice speed-up and plume water flow captured
by a VTOL UAV give insights into subglacial hydrological system of Bowdoin
Glacier, Remote Sens. Environ., 217, 389–399,
https://doi.org/10.1016/j.rse.2018.08.027, 2018.
Juul-Pedersen, T., Arendt, K. E., Mortensen, J., Blicher, M. E., Søgaard,
D., and Rysgaard, S.: Seasonal and interannual phytoplankton production in a
sub-Arctic tidewater outlet glacier fjord, SW Greenland, Mar. Ecol. Prog.
Ser., 524, 27–38, https://doi.org/10.3354/meps11174, 2015.
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., and
Nomura, D.: Upwelling of macronutrients and dissolved inorganic carbon by a
subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland,
J. Geophys. Res.-Biogeosci., 123, 1666–1682, https://doi.org/10.1029/2017JG004248, 2018.
Kjeldsen, K. K., Mortensen, J., Bendtsen, J., Petersen, D., Lennert, K., and
Rysgaard, S.: Ice-dammed lake drainage cools and raises surface salinities
in a tidewater outlet glacier fjord, west Greenland, J. Geophys. Res.-Surf.,
119, 1310–1321, https://doi.org/10.1002/2013JF003034, 2014.
Klunder, M. B., Bauch, D., Laan, P., de Baar, H. J. W., van Heuven, S., and
Ober, S.: Dissolved iron in the Arctic shelf seas and surface waters of the
central Arctic Ocean: Impact of Arctic river water and ice-melt, J. Geophys.
Res., 117, C01027, https://doi.org/10.1029/2011jc007133, 2012.
Knutz, P. C., Sicre, M.-A., Ebbesen, H., Christiansen, S., and Kuijpers, A.:
Multiple-stage deglacial retreat of the southern Greenland Ice Sheet linked
with Irminger Current warm water transport, Paleoceanography, 26, PA3204,
https://doi.org/10.1029/2010PA002053, 2011.
Kohfeld, K. E. and Harrison, S. P.: DIRTMAP: the geological record of dust,
Earth-Science Rev., 54, 81–114, https://doi.org/10.1016/S0012-8252(01)00042-3, 2001.
Koziorowska, K., Kuliński, K., and Pempkowiak, J.: Deposition, return
flux, and burial rates of nitrogen and phosphorus in the sediments of two
high-Arctic fjords, Oceanologia, 60, 431–445,
https://doi.org/10.1016/j.oceano.2018.05.001, 2018.
Krawczyk, D. W., Witkowski, A., Juul-Pedersen, T., Arendt, K. E., Mortensen,
J., and Rysgaard, S.: Microplankton succession in a SW Greenland tidewater
glacial fjord influenced by coastal inflows and run-off from the Greenland
Ice Sheet, Polar Biol., 38, 1515–1533, https://doi.org/10.1007/s00300-015-1715-y,
2015.
Krawczyk, D. W., Meire, L., Lopes, C., Juul-Pedersen, T., Mortensen, J., Li,
C. L., and Krogh, T.: Seasonal succession, distribution, and diversity of
planktonic protists in relation to hydrography of the Godthåbsfjord
system (SW Greenland), Polar Biol., 41, 2033–2052,
https://doi.org/10.1007/s00300-018-2343-0, 2018.
Kumar, V., Tiwari, M., and Rengarajan, R.: Warming in the Arctic Captured by
productivity variability at an Arctic Fjord over the past two centuries,
PLoS One, 13, e0201456, https://doi.org/10.1371/journal.pone.0201456, 2018.
Kwiatkowski, L., Naar, J., Bopp, L., Aumont, O., Defrance, D., and Couespel,
D.: Decline in Atlantic primary production accelerated by Greenland ice
sheet melt, Geophys. Res. Lett., 46, 11347–11357, https://doi.org/10.1029/2019GL085267, 2019.
Laidre, K. L., Twila, M., Hauser, D. D. W., McGovern, R.,
Heide-Jørgensen, M. P., Rune, D., and Hudson, B.: Use of glacial fronts by
narwhals (Monodon monoceros) in West Greenland, Biol. Lett., 12,
20160457, https://doi.org/10.1098/rsbl.2016.0457, 2016.
Lam, P. J. and Bishop, J. K. B.: The continental margin is a key source of
iron to the HNLC North Pacific Ocean, Geophys. Res. Lett., 35, L07608,
https://doi.org/10.1029/2008gl033294, 2008.
Langen, P. L., Mottram, R. H., Christensen, J. H., Boberg, F., Rodehacke, C.
B., Stendel, M., van As, D., Ahlstrøm, A. P., Mortensen, J., Rysgaard,
S., Petersen, D., Svendsen, K. H., Aðalgeirsdóttir, G., and Cappelen,
J.: Quantifying energy and mass fluxes controlling Godthåbsfjord
freshwater input in a 5-km simulation (1991–2012), J. Climate, 28, 3694–3713, https://doi.org/10.1175/JCLI-D-14-00271.1, 2015.
Larsen, A., Egge, J. K., Nejstgaard, J. C., Di Capua, I., Thyrhaug, R.,
Bratbak, G., and Thingstad, T. F.: Contrasting response to nutrient
manipulation in Arctic mesocosms are reproduced by a minimum microbial food
web model, Limnol. Oceanogr., 60, 360–374, https://doi.org/10.1002/lno.10025, 2015.
Lawson, E. C., Bhatia, M. P., Wadham, J. L., and Kujawinski, E. B.:
Continuous Summer Export of Nitrogen-Rich Organic Matter from the Greenland
Ice Sheet Inferred by Ultrahigh Resolution Mass Spectrometry, Environ. Sci.
Technol., 48, 14248–14257, https://doi.org/10.1021/es501732h, 2014a.
Lawson, E. C., Wadham, J. L., Tranter, M., Stibal, M., Lis, G. P., Butler, C. E. H., Laybourn-Parry, J., Nienow, P., Chandler, D., and Dewsbury, P.: Greenland Ice Sheet exports labile organic carbon to the Arctic oceans, Biogeosciences, 11, 4015–4028, https://doi.org/10.5194/bg-11-4015-2014, 2014b.
Le Bras, I. A.-A., Straneo, F., Holte, J., and Holliday, N. P.: Seasonality
of Freshwater in the East Greenland Current System From 2014 to 2016, J.
Geophys. Res.-Ocean., 123, 8828–8848, https://doi.org/10.1029/2018JC014511, 2018.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A.
S.: High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017.
Lefebvre, K. A., Quakenbush, L., Frame, E., Huntington, K. B., Sheffield,
G., Stimmelmayr, R., Bryan, A., Kendrick, P., Ziel, H., Goldstein, T.,
Snyder, J. A., Gelatt, T., Gulland, F., Dickerson, B., and Gill, V.:
Prevalence of algal toxins in Alaskan marine mammals foraging in a changing
arctic and subarctic environment, Harmful Algae, 55, 13–24,
https://doi.org/10.1016/j.hal.2016.01.007, 2016.
Le Fouest, V., Babin, M., and Tremblay, J.-É.: The fate of riverine nutrients on Arctic shelves, Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, 2013.
Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K.,
Achterberg, E. P., Ceballos-Romero, E., Zubkov, M., and Sanders, R. J.: What
causes the inverse relationship between primary production and export
efficiency in the Southern Ocean?, Geophys. Res. Lett., 43, 4457–4466,
https://doi.org/10.1002/2016GL068480, 2016.
León-Muñoz, J., Urbina, M. A., Garreaud, R., and Iriarte, J. L.:
Hydroclimatic conditions trigger record harmful algal bloom in western
Patagonia (summer 2016), Sci. Rep., 8, 1330,
https://doi.org/10.1038/s41598-018-19461-4, 2018.
Levinsen, H. and Nielsen, T. G.: The trophic role of marine pelagic ciliates
and heterotrophic dinoflagellates in arctic and temperate coastal
ecosystems: A cross-latitude comparison, Limnol. Oceanogr., 47, 427–439,
https://doi.org/10.4319/lo.2002.47.2.0427, 2002.
Liestøl, O.: The glaciers in the Kongsfjorden area, Spitsbergen, Nor.
Geogr. Tidsskr. – Nor. J. Geogr., 42, 231–238,
https://doi.org/10.1080/00291958808552205, 1988.
Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J., and Twining, B. S.:
Free-drifting icebergs as sources of iron to the Weddell Sea, Deep. Res.
Part Ii-Topical Stud. Oceanogr., 58, 1392–1406,
https://doi.org/10.1016/j.dsr2.2010.11.020, 2011.
Lippiatt, S. M., Lohan, M. C., and Bruland, K. W.: The distribution of
reactive iron in northern Gulf of Alaska coastal waters, Mar. Chem.,
121, 187–199, https://doi.org/10.1016/j.marchem.2010.04.007, 2010.
Lischka, S. and Riebesell, U.: Synergistic effects of ocean acidification
and warming on overwintering pteropods in the Arctic, Global Chang. Biol.,
18, 3517–3528, https://doi.org/10.1111/gcb.12020, 2012.
Lischka, S., Büdenbender, J., Boxhammer, T., and Riebesell, U.: Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth, Biogeosciences, 8, 919–932, https://doi.org/10.5194/bg-8-919-2011, 2011.
Lund-Hansen, L. C., Hawes, I., Holtegaard Nielsen, M., Dahllöf, I., and
Sorrell, B. K.: Summer meltwater and spring sea ice primary production,
light climate and nutrients in an Arctic estuary, Kangerlussuaq, west
Greenland, Arctic, Antarct. Alp. Res., 50, S100025,
https://doi.org/10.1080/15230430.2017.1414468, 2018.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M.,
Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø.,
Walczowski, W., Weslawski, J. M., and Zajaczkowski, M.: The importance of
tidewater glaciers for marine mammals and seabirds in Svalbard, Norway, J.
Mar. Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
Maat, D. S., Prins, M. A., and Brussaard, C. P. D.: Sediments from Arctic
Tide-Water Glaciers Remove Coastal Marine Viruses and Delay Host Infection,
Viruses, 11, 123, https://doi.org/10.3390/v11020123, 2019.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and
Singh, H.: Structure and dynamics of a subglacial discharge plume in a
Greenlandic Fjord, J. Geophys. Res.-Ocean., 121, 8670–8688, https://doi.org/10.1002/2016JC011764, 2016.
Markussen, T. N., Elberling, B., Winter, C., and Andersen, T. J.: Flocculated
meltwater particles control Arctic land-sea fluxes of labile iron, Sci.
Rep., 6, 24033, https://doi.org/10.1038/srep24033, 2016.
Marsay, C. M., Barrett, P. M., McGillicuddy, D. J., and Sedwick, P. N.:
Distributions, sources, and transformations of dissolved and particulate
iron on the Ross Sea continental shelf during summer, J. Geophys. Res.-Ocean., 122, 6371–6393, https://doi.org/10.1002/2017JC013068, 2017.
Martin, J. H.: Glacial-interglacial CO2 change?: The iron hypothesis,
Paleoceanography, 5, 1–13, 1990.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, 1990a.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters,
Nature, 345, 156–158, https://doi.org/10.1038/345156a0, 1990b.
Mascarenhas, V. J. and Zielinski, O.: Hydrography-Driven Optical Domains in
the Vaigat-Disko Bay and Godthabsfjord: Effects of Glacial Meltwater
Discharge, Front. Mar. Sci., 6, 335, https://doi.org/10.3389/fmars.2019.00335, 2019.
Mascioni, M., Almandoz, G. O., Cefarelli, A. O., Cusick, A., Ferrario, M. E.,
and Vernet, M.: Phytoplankton composition and bloom formation in unexplored
nearshore waters of the western Antarctic Peninsula, Polar Biol., 42,
1859–1872, https://doi.org/10.1007/s00300-019-02564-7, 2019.
Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., Juul-Pedersen, T., Blicher, M. E., and Rysgaard, S.: Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, 2015.
Meire, L., Meire, P., Struyf, E., Krawczyk, D. W., Arendt, K. E., Yde, J.
C., Juul Pedersen, T., Hopwood, M. J., Rysgaard, S., and Meysman, F. J. R.:
High export of dissolved silica from the Greenland Ice Sheet, Geophys. Res.
Lett., 43, 9173–9182, https://doi.org/10.1002/2016GL070191, 2016a.
Meire, L., Mortensen, J., Rysgaard, S., Bendtsen, J., Boone, W., Meire, P.,
and Meysman, F. J. R.: Spring bloom dynamics in a subarctic fjord influenced
by tidewater outlet glaciers (Godthåbsfjord, SW Greenland), J. Geophys.
Res.-Biogeosci., 121, 1581–1592, https://doi.org/10.1002/2015JG003240, 2016b.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Chang. Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E.,
Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D.,
Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S.,
Robinson, C. T., Tranter, M., and Brown, L. E.: Glacier shrinkage driving
global changes in downstream systems, P. Natl. Acad. Sci. USA, 114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017.
Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven, J. A., Granéli, E., Glibert, P. M., Hansen, P. J., Stoecker, D. K., Thingstad, F., Tillmann, U., Våge, S., Wilken, S., and Zubkov, M. V.: The role of mixotrophic protists in the biological carbon pump, Biogeosciences, 11, 995–1005, https://doi.org/10.5194/bg-11-995-2014, 2014.
Moffat, C.: Wind-driven modulation of warm water supply to a proglacial
fjord, Jorge Montt Glacier, Patagonia, Geophys. Res. Lett., 41,
3943–3950, https://doi.org/10.1002/2014GL060071, 2014.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2018.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov,
I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T.
F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient
limitation, Nat. Geosci, 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Mortensen, J., Lennert, K., Bendtsen, J., and Rysgaard, S.: Heat sources for
glacial melt in a sub-Arctic fjord (Godthabsfjord) in contact with the
Greenland Ice Sheet, J. Geophys. Res., 116, C01013, https://doi.org/10.1029/2010jc006528, 2011.
Mortensen, J., Bendtsen, J., Lennert, K., and Rysgaard, S.: Seasonal
variability of the circulation system in a west Greenland tidewater outlet
glacier fjord, Godthåbsfjord (64∘ N), J. Geophys. Res.-Earth
Surf., 119, 2591–2603, https://doi.org/10.1002/2014JF003267, 2014.
Mortensen, J., Rysgaard, S., Arendt, K. E., Juul-Pedersen, T., Søgaard,
D. H., Bendtsen, J., and Meire, L.: Local Coastal Water Masses Control Heat
Levels in a West Greenland Tidewater Outlet Glacier Fjord, J. Geophys. Res.-Ocean., 123, 8068–8083, https://doi.org/10.1029/2018JC014549, 2018.
Morton, B. R., Taylor, G., and Turner, J. S.: Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. A, 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA,
116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A.,
Głowacki, O., Wojtysiak, K., and Zagórski, P.: Spatiotemporal changes in
the concentration and composition of suspended particulate matter in front
of Hansbreen, a tidewater glacier in Svalbard, Oceanologia, 60, 446–463,
https://doi.org/10.1016/j.oceano.2018.03.001, 2018.
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and
Bruhn, A.: The influence of glacial melt water on bio-optical properties in
two contrasting Greenlandic fjords, Estuar. Coast. Shelf Sci., 163, 72–83,
https://doi.org/10.1016/j.ecss.2015.05.041, 2015.
Nielsdottir, M. C., Moore, C. M., Sanders, R., Hinz, D. J., and Achterberg,
E. P.: Iron limitation of the postbloom phytoplankton communities in the
Iceland Basin, Global Biogeochem. Cy., 23, GB3001, https://doi.org/10.1029/2008gb003410,
2009.
Nielsen, T. G.: Plankton community structure and carbon cycling on the
western coast of Greenland during the stratified summer situation. I.
Hydrography, phytoplankton and bacterioplankton, Aquat. Microb. Ecol.,
16, 205–216, 1999.
Nielsen, T. G., and Hansen, B.: Plankton community structure and carbon
cycling on the western coast of Greenland during and after the sedimentation
of a diatom bloom, Mar. Ecol. Prog. Ser., 125, 239–257, 1995.
Nightingale, A. M., Beaton, A. D., and Mowlem, M. C.: Trends in microfluidic
systems for in situ chemical analysis of natural waters, Sensors Actuators B
Chem., 221, 1398–1405, https://doi.org/10.1016/j.snb.2015.07.091, 2015.
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015.
Normandeau, A., Dietrich, P., Hughes Clarke, J., Van Wychen, W., Lajeunesse,
P., Burgess, D., and Ghienne, J.-F.: Retreat Pattern of Glaciers Controls the
Occurrence of Turbidity Currents on High-Latitude Fjord Deltas (Eastern
Baffin Island), J. Geophys. Res.-Earth Surf., 124, 1559–1571,
https://doi.org/10.1029/2018JF004970, 2019.
Oliver, H., Luo, H., Castelao, R. M., van Dijken, G. L., Mattingly, K.,
Rosen, J. J., Mote, T. L., Arrigo, K. R., Rennermalm, Å. K., Tedesco, M.,
and Yager, P. L.: Exploring the Potential Impact of Greenland Meltwater on
Stratification, Photosynthetically Active Radiation, and Primary Production
in the Labrador Sea, J. Geophys. Res.-Ocean., 123, 2570–2591, https://doi.org/10.1002/2018JC013802,
2018.
Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt,
B., Van Den Broeke, M. R., Noel, B. P. Y., and Morlighem, M.: Substantial
export of suspended sediment to the global oceans from glacial erosion in
Greenland, Nat. Geosci., 10, 859–863, https://doi.org/10.1038/NGEO3046, 2017.
Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean, 1998–2006, J. Geophys. Res.-Ocean., 113, C08005,
https://doi.org/10.1029/2007JC004578, 2008.
Pabortsava, K., Lampitt, R. S., Benson, J., Crowe, C., McLachlan, R., Le
Moigne, F. A. C., Mark Moore, C., Pebody, C., Provost, P., Rees, A. P.,
Tilstone, G. H., and Woodward, E. M. S.: Carbon sequestration in the deep
Atlantic enhanced by Saharan dust, Nat. Geosci., 10, 189–194,
https://doi.org/10.1038/ngeo2899, 2017.
Paulsen, M. L., Nielsen, S. E. B., Müller, O., Møller, E. F.,
Stedmon, C. A., Juul-Pedersen, T., Markager, S., Sejr, M. K., Delgado
Huertas, A., Larsen, A., and Middelboe, M.: Carbon Bioavailability in a High
Arctic Fjord Influenced by Glacial Meltwater, NE Greenland, Front. Mar.
Sci., 4, 176, https://doi.org/10.3389/fmars.2017.00176, 2017.
Paulsen, M. L., Müller, O., Larsen, A., Møller, E. F., Middelboe, M.,
Sejr, M. K., and Stedmon, C.: Biological transformation of Arctic dissolved
organic matter in a NE Greenland fjord, Limnol. Oceanogr., 64, 1014–1033,
https://doi.org/10.1002/lno.11091, 2018.
Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A., and Wilhelm, S. W.: Viral
release of iron and its bioavailability to marine plankton, Limnol.
Oceanogr., 49, 1734–1741, 2004.
Prado-Fiedler, R.: Winter and summer distribution of dissolved oxygen, pH
and nutrients at the heads of fjords in Chilean Patagonia with possible
phosphorus limitation, Rev. Biol. Mar. Oceanogr., 44, 783–789, 2009.
Prospero, J. M., Bullard, J. E., and Hodgkins, R.: High-Latitude Dust Over
the North Atlantic: Inputs from Icelandic Proglacial Dust Storms, Science,
80, 1078–1082, https://doi.org/10.1126/science.1217447, 2012.
Raiswell, R. and Canfield, D. E.: The Iron biogeochemical Cycle Past and
Present, Geochem. Perspect., 1, 1–220, https://doi.org/10.7185/geochempersp.1.1,
2012.
Raiswell, R., Tranter, M., Benning, L. G., Siegert, M., De'ath, R.,
Huybrechts, P., and Payne, T.: Contributions from glacially derived sediment
to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to
the oceans, Geochim. Cosmochim. Acta, 70, 2765–2780,
https://doi.org/10.1016/j.gca.2005.12.027, 2006.
Raiswell, R., Benning, L. G., Tranter, M., and Tulaczyk, S.: Bioavailable
iron in the Southern Ocean: the significance of the iceberg conveyor belt,
Geochem. Trans., 9, 7, https://doi.org/10.1186/1467-4866-9-7, 2008.
Redfield, A. C.: On the proportions of organic derivations in sea water and
their relation to the composition of plankton, in: James Johnstone Memorial
Volume, edited by: R. J. Daniel, 177–192, University Press of Liverpool,
Liverpool, 1934.
Reisdorph, S. C. and Mathis, J. T.: Assessing net community production in a glaciated Alaskan fjord, Biogeosciences, 12, 5185–5198, https://doi.org/10.5194/bg-12-5185-2015, 2015.
Ren, Z., Martyniuk, N., Oleksy, I. A., Swain, A., and Hotaling, S.:
Ecological Stoichiometry of the Mountain Cryosphere, Front. Ecol. Evol., 7,
360, https://doi.org/10.3389/fevo.2019.00360, 2019.
Renner, M., Arimitsu, M. L., Piatt, J. F., and Rochet, M.-J.: Structure of
marine predator and prey communities along environmental gradients in a
glaciated fjord, Can. J. Fish. Aquat. Sci., 69, 2029–2045,
https://doi.org/10.1139/f2012-117, 2012.
Ribeiro, S., Moros, M., Ellegaard, M., and Kuijpers, A.: Climate variability
in West Greenland during the past 1500 years: evidence from a
high-resolution marine palynological record from Disko Bay, Boreas, 41,
68–83, https://doi.org/10.1111/j.1502-3885.2011.00216.x, 2012.
Ribeiro, S., Sejr, M. K., Limoges, A., Heikkilä, M., Andersen, T. J.,
Tallberg, P., Weckström, K., Husum, K., Forwick, M., Dalsgaard, T.,
Massé, G., Seidenkrantz, M.-S., and Rysgaard, S.: Sea ice and primary
production proxies in surface sediments from a High Arctic Greenland fjord:
Spatial distribution and implications for palaeoenvironmental studies,
Ambio, 46, 106–118, https://doi.org/10.1007/s13280-016-0894-2, 2017.
Richlen, M. L., Zielinski, O., Holinde, L., Tillmann, U., Cembella, A., Lyu,
Y., and Anderson, D. M.: Distribution of Alexandrium fundyense (Dinophyceae)
cysts in Greenland and Iceland, with an emphasis on viability and growth in
the Arctic, Mar. Ecol. Prog. Ser., 547, 33–46, https://doi.org/10.3354/meps11660, 2016.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 80, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen,
J., and Gerringa, L. J. A.: Dissolved Fe in the Deep and Upper Arctic Ocean
With a Focus on Fe Limitation in the Nansen Basin, Front. Mar. Sci., 5, 88,
https://doi.org/10.3389/fmars.2018.00088, 2018.
Ryan-Keogh, T. J., Macey, A. I., Nielsdottir, M. C., Lucas, M. I.,
Steigenberger, S. S., Stinchcombe, M. C., Achterberg, E. P., Bibby, T. S.,
and Moore, C. M.: Spatial and temporal development of phytoplankton iron
stress in relation to bloom dynamics in the high-latitude North Atlantic
Ocean, Limnol. Oceanogr., 58, 533–545, https://doi.org/10.4319/lo.2013.58.2.0533,
2013.
Rysgaard, S. and Glud, R. N.: Carbon cycling and climate change: Predictions for a high-Arctic marine ecosystem (Young Sound, NE Greenland). Meddelelser om Groenland, Bioscience, 58, 206–213, 2007.
Rysgaard, S., Nielsen, T., and Hansen, B.: Seasonal variation in nutrients,
pelagic primary production and grazing in a high-Arctic coastal marine
ecosystem, Young Sound, Northeast Greenland, Mar. Ecol. Prog. Ser., 179,
13–25, https://doi.org/10.3354/meps179013, 1999.
Rysgaard, S., Vang, T., Stjernholm, M., Rasmussen, B., Windelin, A., and
Kiilsholm, S.: Physical conditions, carbon transport, and climate change
impacts in a northeast Greenland fjord, Arct. Antarct. Alp. Res., 35,
301–312, https://doi.org/10.1657/1523-0430(2003)035[0301:pcctac]2.0.co;2, 2003.
Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sørensen, L. L., Lennert,
K., Søgaard, D. H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and
Bendtsen, J.: High air–sea CO2 uptake rates in nearshore and shelf areas of
Southern Greenland: Temporal and spatial variability, Mar. Chem., 128–129,
26–33, https://doi.org/10.1016/j.marchem.2011.11.002, 2012.
Ryu, J.-S. and Jacobson, A. D.: CO2 evasion from the Greenland Ice Sheet: A
new carbon-climate feedback, Chem. Geol., 320–321, 80–95,
https://doi.org/10.1016/j.chemgeo.2012.05.024, 2012.
Schaffer, J., Kanzow, T., von Appen, W., von Albedyll, L., Arndt, J. E., and Roberts, D. H.: Bathymetry constrains ocean
heat supply to Greenland's largest glacier tongue, Nat. Geosci., 13,
227–231, https://doi.org/10.1038/s41561-019-0529-x, 2020.
Schild, K. M., Hawley, R. L., and Morriss, B. F.: Subglacial hydrology at
Rink Isbræ, West Greenland inferred from sediment plume appearance, Ann.
Glaciol., 57, 118–127, https://doi.org/10.1017/aog.2016.1, 2016.
Schlosser, C., Schmidt, K., Aquilina, A., Homoky, W. B., Castrillejo, M., Mills, R. A., Patey, M. D., Fielding, S., Atkinson, A., and Achterberg, E. P.: Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean, Biogeosciences, 15, 4973–4993, https://doi.org/10.5194/bg-15-4973-2018, 2018.
Schmidt, K., Atkinson, A., Steigenberger, S., Fielding, S., Lindsay, M. C.
M., Pond, D. W., Tarling, G. A., Klevjer, T. A., Allen, C. S., Nicol, S., and
Achterberg, E. P.: Seabed foraging by Antarctic krill: Implications for
stock assessment, bentho-pelagic coupling, and the vertical transfer of
iron, Limnol. Oceanogr., 56, 1411–1428, https://doi.org/10.4319/lo.2011.56.4.1411,
2011.
Schroth, A. W., Crusius, J., Chever, F., Bostick, B. C., and Rouxel, O. J.:
Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of
Alaska and effects of deglaciation, Geophys. Res. Lett., 38, L16605,
https://doi.org/10.1029/2011gl048367, 2011.
Schroth, A. W., Crusius, J., Campbell, R. W., and Hoyer, I.: Estuarine
removal of glacial iron and implications for iron fluxes to the ocean,
Geophys. Res. Lett., 41, 3951–3958, https://doi.org/10.1002/2014GL060199, 2014.
Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C.,
Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O., and
DiTullio, G. R.: Early season depletion of dissolved iron in the Ross Sea
polynya: Implications for iron dynamics on the Antarctic continental shelf,
J. Geophys. Res., 116, C12019, https://doi.org/10.1029/2010JC006553, 2011.
Seifert, M., Hoppema, M., Burau, C., Elmer, C., Friedrichs, A., Geuer, J.
K., John, U., Kanzow, T., Koch, B. P., Konrad, C., van der Jagt, H.,
Zielinski, O., and Iversen, M. H.: Influence of Glacial Meltwater on Summer
Biogeochemical Cycles in Scoresby Sund, East Greenland, Front. Mar. Sci., 6,
412, https://doi.org/10.3389/fmars.2019.00412, 2019.
Sejr, M. K., Krause-Jensen, D., Rysgaard, S., Sørensen, L. L.,
Christensen, P. B., and Glud, R. N.: Air–sea flux of CO2 in arctic coastal
waters influenced by glacial melt water and sea ice, Tellus B, 63,
815–822, https://doi.org/10.1111/j.1600-0889.2011.00540.x, 2011.
Sejr, M. K., Stedmon, C. A., Bendtsen, J., Abermann, J., Juul-Pedersen, T.,
Mortensen, J., and Rysgaard, S.: Evidence of local and regional freshening of
Northeast Greenland coastal waters, Sci. Rep., 7, 13183,
https://doi.org/10.1038/s41598-017-10610-9, 2017.
Shaffer, G. and Lambert, F.: In and out of glacial extremes by way of
dust−climate feedbacks, P. Natl. Acad. Sci. USA, 115, 2026–2031,
https://doi.org/10.1073/pnas.1708174115, 2018.
Sholkovitz, E. R., Boyle, E. A., and Price, N. B.: The removal of dissolved
humic acids and iron during estuarine mixing, Earth Planet. Sci. Lett., 40,
130–136, https://doi.org/10.1016/0012-821X(78)90082-1, 1978.
Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W.,
and Nienow, P. W.: Localized Plumes Drive Front-Wide Ocean Melting of A
Greenlandic Tidewater Glacier, Geophys. Res. Lett., 45, 12312–350358,
https://doi.org/10.1029/2018GL080763, 2018.
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High
rates of organic carbon burial in fjord sediments globally, Nat. Geosci., 8,
450–453, https://doi.org/10.1038/ngeo2421, 2015.
Smoła, Z. T., Tatarek, A., Wiktor, J. M., Wiktor, J. M. W., Kubiszyn, A.,
and Węsławski, J. M.: Primary producers and production in Hornsund and
Kongsfjorden – comparison of two fjord systems, Polish Polar Res., 38,
351–373, https://doi.org/10.1515/popore-2017-0013, 2017.
Sommaruga, R.: When glaciers and ice sheets melt: consequences for
planktonic organisms, J. Plankton Res., 37, 509–518,
https://doi.org/10.1093/plankt/fbv027, 2015.
Spall, M. A., Jackson, R. H., and Straneo, F.: Katabatic Wind-Driven Exchange
in Fjords, J. Geophys. Res.-Ocean., 122, 8246–8262,
https://doi.org/10.1002/2017JC013026, 2017.
Statham, P. J., Skidmore, M., and Tranter, M.: Inputs of glacially derived
dissolved and colloidal iron to the coastal ocean and implications for
primary productivity, Global Biogeochem. Cy., 22, Gb3013,
https://doi.org/10.1029/2007gb003106, 2008.
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L., and Morlighem, M.: Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations, The Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, 2016.
Stevenson, E. I., Fantle, M. S., Das, S. B., Williams, H. M., and Aciego, S.
M.: The iron isotopic composition of subglacial streams draining the
Greenland ice sheet, Geochim. Cosmochim. Acta, 213, 237–254,
https://doi.org/10.1016/j.gca.2017.06.002, 2017.
Stibal, M., Anesio, A. M., Blues, C. J. D., and Tranter, M.: Phosphatase activity and organic phosphorus turnover on a high Arctic glacier, Biogeosciences, 6, 913–922, https://doi.org/10.5194/bg-6-913-2009, 2009.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and
Dinniman, M. S.: Pathways and supply of dissolved iron in the Amundsen Sea
(Antarctica), J. Geophys. Res.-Ocean., 122, 7135–7162, https://doi.org/10.1002/2017JC013162, 2017.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Oliver, H., Dinniman, M. S.,
and Stammerjohn, S. E.: Modeling the Seasonal Cycle of Iron and Carbon
Fluxes in the Amundsen Sea Polynya, Antarctica, J. Geophys. Res.-Ocean.,
124, 1544–1565, https://doi.org/10.1029/2018JC014773, 2019.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate change 2013: The physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 1535, 2013.
Stoecker, D. K. and Lavrentyev, P. J.: Mixotrophic Plankton in the Polar
Seas: A Pan-Arctic Review, Front. Mar. Sci., 5, 292,
https://doi.org/10.3389/fmars.2018.00292, 2018.
Stoecker, D. K., Hansen, P. J., Caron, D. A., and Mitra, A.: Mixotrophy in
the Marine Plankton, Annu. Rev. Mar. Sci., 9, 311–335,
https://doi.org/10.1146/annurev-marine-010816-060617, 2017.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and
Their Role in Climate, Annu. Rev. Mar. Sci., 7, 89–112,
https://doi.org/10.1146/annurev-marine-010213-135133, 2015.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation
of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/ngeo764, 2010.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C.,
Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial runoff
on the circulation near Helheim Glacier, Nat. Geosci., 4, 322–327, 2011.
Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G. S.,
Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean
waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012.
Straneo, F., Sutherland, D. A., Stearns, L., Catania, G., Heimbach, P.,
Moon, T., Cape, M. R., Laidre, K. L., Barber, D., Rysgaard, S., Mottram, R.,
Olsen, S., Hopwood, M. J., and Meire, L.: The Case for a Sustained Greenland
Ice Sheet-Ocean Observing System (GrIOOS), Front. Mar. Sci., 6, 138,
https://doi.org/10.3389/fmars.2019.00138, 2019.
Štrojsová, A., Vrba, J., Nedoma, J., and Šimek, K.: Extracellular
phosphatase activity of freshwater phytoplankton exposed to different in
situ phosphorus concentrations, Mar. Freshw. Res., 56, 417–424,
https://doi.org/10.1071/MF04283, 2005.
Strzepek, R. F., Maldonado, M. T., Higgins, J. L., Hall, J., Safi, K.,
Wilhelm, S. W., and Boyd, P. W.: Spinning the “Ferrous Wheel”: The
importance of the microbial community in an iron budget during the FeCycle
experiment, Global Biogeochem. Cy., 19, GB4S26, https://doi.org/10.1029/2005GB002490, 2005.
Sundfjord, A., Albretsen, J., Kasajima, Y., Skogseth, R., Kohler, J., Nuth,
C., Skarðhamar, J., Cottier, F., Nilsen, F., Asplin, L., Gerland, S., and
Torsvik, T.: Effects of glacier runoff and wind on surface layer dynamics
and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study,
Estuar. Coast. Shelf Sci., 187, 260–272, https://doi.org/10.1016/j.ecss.2017.01.015,
2017.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane
Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J. Geophys. Res.-Ocean., 114, C05020, https://doi.org/10.1029/2008JC004808, 2009.
Sutherland, D. A., Roth, G. E., Hamilton, G. S., Mernild, S. H., Stearns, L.
A., and Straneo, F.: Quantifying flow regimes in a Greenland glacial fjord
using iceberg drifters, Geophys. Res. Lett., 41, 8411–8420,
https://doi.org/10.1002/2014GL062256, 2014.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B.,
Tverberg, V., Gerland, S., Ørbøk, J. B., Bischof, K., Papucci, C.,
Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., and
Dallmann, W.: The physical environment of Kongsfjorden–Krossfjorden, an
Arctic fjord system in Svalbard, Polar Res., 21, 133–166,
https://doi.org/10.1111/j.1751-8369.2002.tb00072.x, 2002.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S.,
Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock,
C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean
biogeochemistry models simulate dissolved iron distributions?, Global
Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289, 2016.
Taylor, R. L., Semeniuk, D. M., Payne, C. D., Zhou, J., Tremblay, J.-É.,
Cullen, J. T., and Maldonado, M. T.: Colimitation by light, nitrate, and iron
in the Beaufort Sea in late summer, J. Geophys. Res.-Ocean., 118,
3260–3277, https://doi.org/10.1002/jgrc.20244, 2013.
Thingstad, T. F., Bellerby, R. G. J., Bratbak, G., Børsheim, K. Y., Egge,
J. K., Heldal, M., Larsen, A., Neill, C., Nejstgaard, J., Norland, S.,
Sandaa, R.-A., Skjoldal, E. F., Tanaka, T., Thyrhaug, R., and Töpper, B.:
Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem,
Nature, 455, 387–390, https://doi.org/10.1038/nature07235, 2008.
Thuroczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills, M.
M., Van Dijken, G. L., De Baar, H. J. W., and Arrigo, K. R.: Key role of
organic complexation of iron in sustaining phytoplankton blooms in the Pine
Island and Amundsen Polynyas (Southern Ocean), Deep. Res. Part Ii, 71–76, 49–60, https://doi.org/10.1016/j.dsr2.2012.03.009, 2012.
Tonnard, M., Planquette, H., Bowie, A. R., van der Merwe, P., Gallinari, M., Desprez de Gésincourt, F., Germain, Y., Gourain, A., Benetti, M., Reverdin, G., Tréguer, P., Boutorh, J., Cheize, M., Lacan, F., Menzel Barraqueta, J.-L., Pereira-Contreira, L., Shelley, R., Lherminier, P., and Sarthou, G.: Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01), Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, 2020.
Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F., and West, A. J.:
Glaciers, sulfide oxidation, and the carbon cycle, P. Natl. Acad. Sci. USA,
114, 8716–8721, https://doi.org/10.1073/pnas.1702953114, 2017.
Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D.,
Skarðhamar, J., Lindbäck, K., and Everett, A.: Impact of tidewater
glacier retreat on the fjord system: Modeling present and future circulation
in Kongsfjorden, Svalbard, Estuar. Coast. Shelf Sci., 220, 152–165,
https://doi.org/10.1016/j.ecss.2019.02.005, 2019.
Tranter, M., Huybrechts, P., Munhoven, G., Sharp, M. J., Brown, G. H.,
Jones, I.W., Hodson, A. J., Hodgkins, R., and Wadham, J. L.: Direct effect of
ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes
during the last glacial cycle: minimal impact on atmospheric CO2
concentrations, Chem. Geol., 190, 33–44, https://doi.org/10.1016/S0009-2541(02)00109-2, 2002.
Tremblay, J.-É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 193, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009, 2015.
Turk, D., Bedard, J. M., Burt, W. J., Vagle, S., Thomas, H., Azetsu-Scott,
K., McGillis, W. R., Iverson, S. J., and Wallace, D. W. R.: Inorganic carbon
in a high latitude estuary-fjord system in Canada's eastern Arctic, Estuar.
Coast. Shelf Sci., 178, 137–147, https://doi.org/10.1016/j.ecss.2016.06.006, 2016.
Twining, B. S. and Baines, S. B.: The Trace Metal Composition of Marine
Phytoplankton, Ann. Rev. Mar. Sci., 5, 191–215,
https://doi.org/10.1146/annurev-marine-121211-172322, 2013.
Uehlinger, U., Robinson, C., Hieber, M., and Zah, R.: The physico-chemical
habitat template for periphyton in alpine glacial streams under a changing
climate, Hydrobiologia, 657, 107–121, 10.1007/s10750-009-9963-x, 2010.
Uitz, J., Claustre, H., Griffiths, F. B., Ras, J., Garcia, N., and Sandroni,
V.: A phytoplankton class-specific primary production model applied to the
Kerguelen Islands region (Southern Ocean), Deep Sea Res. Part I, 56, 541–560, https://doi.org/10.1016/j.dsr.2008.11.006, 2009.
van de Poll, W. H., Kulk, G., Rozema, P. D., Brussaard, C. P. D., Visser, R.
J. W., and Buma, A. G. J.: Contrasting glacial meltwater effects on
post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden,
Spitsbergen, Elem. Sci. Anth., 6, 50, https://doi.org/10.1525/elementa.307, 2018.
van der Merwe, P. C., Wuttig, K., Holmes, T., Trull, T., Chase, Z., Townsend,
A., Goemann, K., and Bowie, A. R.: High lability Fe particles sourced from
glacial erosion can meet previously unaccounted biological demand: Heard
Island, Southern Ocean, Front. Mar. Sci., 6, 332, https://doi.org/10.3389/fmars.2019.00332, 2019.
Vandersea, M. W., Kibler, S. R., Tester, P. A., Holderied, K., Hondolero, D.
E., Powell, K., Baird, S., Doroff, A., Dugan, D., and Litaker, R.
W.: Environmental factors influencing the distribution and abundance of
Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska, Harmful
Algae, 77, 81–92, https://doi.org/10.1016/j.hal.2018.06.008, 2018.
Vergara-Jara, M. J., DeGrandpre, M. D., Torres, R., Beatty, C. M., Cuevas, L. A., Alarcón, E., and Iriarte, J. L.: Seasonal changes in carbonate saturation state and air‐sea CO2 fluxes during an annual cycle in a stratified‐temperate fjord (Reloncaví Fjord, Chilean Patagonia), J. Geophys. Res.-Biogeosci., 124, 2851–2865, https://doi.org/10.1029/2019JG005028, 2019.
Vraspir, J. M. and Butler, A.: Chemistry of Marine Ligands and Siderophores,
Annu. Rev. Mar. Sci., 1, 43–63, https://doi.org/10.1146/annurev.marine.010908.163712,
2009.
Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons,
W. B., Sharp, M., Wynn, P., and Jackson, M.: Biogeochemical weathering under
ice: Size matters, Global Biogeochem. Cy., 24, GB3025, https://doi.org/10.1029/2009GB003688,
2010.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567, https://doi.org/10.1038/s41467-019-11394-4,
2019.
Ward, B. A. and Follows, M. J.: Marine mixotrophy increases trophic transfer
efficiency, mean organism size, and vertical carbon flux, P. Natl. Acad.
Sci. USA, 113, 2958–2963, https://doi.org/10.1073/pnas.1517118113, 2016.
Wçslawski W, J. M. and Legezytńska, J.: Glaciers caused zooplankton
mortality?, J. Plankton Res., 20, 1233–1240,
https://doi.org/10.1093/plankt/20.7.1233, 1998.
Wehrmann, L. M., Formolo, M. J., Owens, J. D., Raiswell, R., Ferdelman, T.
G., Riedinger, N., and Lyons, T. W.: Iron and manganese speciation and
cycling in glacially influenced high-latitude fjord sediments (West
Spitsbergen, Svalbard): Evidence for a benthic recycling-transport
mechanism, Geochim. Cosmochim. Acta, 141, 628–655, https://doi.org/10.1016/j.gca.2014.06.007, 2014.
Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C.
G., Kudela, R. M., Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M., and
Cochlan, W. P.: Harmful algal blooms and climate change: Learning from the
past and present to forecast the future, Harmful Algae, 49, 68–93,
https://doi.org/10.1016/j.hal.2015.07.009, 2015.
White, J. R. and Dagg, M. J.: Effects of suspended sediments on egg
production of the calanoid copepod Acartia tonsa, Mar. Biol., 102,
315–319, https://doi.org/10.1007/BF00428483, 1989.
Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A., and Gabrielsen, T. M.:
Seasonality of vertical flux and sinking particle characteristics in an
ice-free high arctic fjord—Different from subarctic fjords?, J. Mar.
Syst., 154, 192–205, https://doi.org/10.1016/j.jmarsys.2015.10.003, 2016.
Windom, H., Byrd, J., Smith, R., Hungspreugs, M., Dharmvanij, S.,
Thumtrakul, W., and Yeats, P.: Trace metal-nutrient relationships in
estuaries, Mar. Chem., 32, 177–194, https://doi.org/10.1016/0304-4203(91)90037-W,
1991.
Włodarska-Kowalczuk, M. and Pearson, T. H.: Soft-bottom macrobenthic
faunal associations and factors affecting species distributions in an Arctic
glacial fjord (Kongsfjord, Spitsbergen), Polar Biol., 27, 155–167,
https://doi.org/10.1007/s00300-003-0568-y, 2004.
Włodarska-Kowalczuk, M. and Weslawski, J. M.: Impact of climate warming on
Arctic benthic biodiversity: a case study of two Arctic glacial bays,
Clim. Res., 18, 127–132, 2001.
Włodarska-Kowalczuk, M., Pearson, T. H., and Kendall, M. A.: Benthic
response to chronic natural physical disturbance by glacial sedimentation in
an Arctic fjord, Mar. Ecol. Progr. Ser., 303, 31–41, https://doi.org/10.3354/meps303031, 2005.
Włodarska-Kowalczuk, M., Mazurkiewicz, M., Górska, B., Michel, L. N.,
Jankowska, E., and Zaborska, A.: Organic carbon origin, benthic faunal
consumption and burial in sediments of northern Atlantic and Arctic fjords
(60–81∘ N), J. Geophys. Res.-Biogeosci., 124, 3737–3751,
https://doi.org/10.1029/2019JG005140, 2019
Wojtasiewicz, B., Trull, T. W., Clementson, L., Davies, D. M., Patten, N.
L., Schallenberg, C., and Hardman-Mountford, N. J.: Factors Controlling the
Lack of Phytoplankton Biomass in Naturally Iron Fertilized Waters Near Heard
and McDonald Islands in the Southern Ocean, Front. Mar. Sci., 6, 531,
https://doi.org/10.3389/fmars.2019.00531, 2019.
Xie, H., Bélanger, S., Song, G., Benner, R., Taalba, A., Blais, M., Tremblay, J.-É., and Babin, M.: Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications, Biogeosciences, 9, 3047–3061, https://doi.org/10.5194/bg-9-3047-2012, 2012.
Xu, Y., Rignot, E., Menemenlis, D., and Koppes, M.: Numerical experiments on
subaqueous melting of greenland tidewater glaciers in response to ocean
warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234,
https://doi.org/10.3189/2012AoG60A139, 2012.
Yde, J. C., Knudsen, N. T., and Nielsen, O. B.: Glacier hydrochemistry,
solute provenance, and chemical denudation at a surge-type glacier in
Kuannersuit Kuussuat, Disko Island, West Greenland, J. Hydrol., 300,
172–187, https://doi.org/10.1016/j.jhydrol.2004.06.008, 2005.
Yde, J. C., Knudsen, N. T., Hasholt, B., and Mikkelsen, A. B.: Meltwater
chemistry and solute export from a Greenland Ice Sheet catchment, Watson
River, West Greenland, J. Hydrol., 519, 2165–2179,
https://doi.org/10.1016/j.jhydrol.2014.10.018, 2014.
Zajączkowski, M. and Włodarska-Kowalczuk, M.: Dynamic sedimentary
environments of an Arctic glacier-fed river estuary (Adventfjorden,
Svalbard). I. Flux, deposition, and sediment dynamics, Estuar. Coast. Shelf
Sci., 74, 285–296, https://doi.org/10.1016/j.ecss.2007.04.015, 2007.
Zhang, R., John, S. G., Zhang, J., Ren, J., Wu, Y., Zhu, Z., Liu, S., Zhu,
X., Marsay, C. M., and Wenger, F.: Transport and reaction of iron and iron
stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From
rivers to estuary to ocean, Earth Planet. Sci. Lett., 424, 201–211,
https://doi.org/10.1016/j.epsl.2015.05.031, 2015.
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Here we compare and contrast results from five well-studied Arctic field sites in order to...