Articles | Volume 14, issue 4
https://doi.org/10.5194/tc-14-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Dustin Carroll
Moss Landing Marine Laboratories, San José State University, Moss Landing, CA
Thorben Dunse
Western Norway University of Applied Sciences, Sogndal, Norway
The University of Oslo, Oslo, Norway
Andy Hodson
Western Norway University of Applied Sciences, Sogndal, Norway
The University Centre in Svalbard, Longyearbyen, Svalbard
Johnna M. Holding
Department of Bioscience, Aarhus University, Silkeborg, Denmark
José L. Iriarte
Instituto de Acuicultura and Centro Dinámica de Ecosistemas
Marinos de Altas Latitudes – IDEAL, Universidad Austral de Chile, Puerto
Montt, Chile
Sofia Ribeiro
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Eric P. Achterberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Carolina Cantoni
CNR-ISMAR Istituto di Scienze Marine, Trieste, Italy
Daniel F. Carlson
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht, Germany
Melissa Chierici
The University Centre in Svalbard, Longyearbyen, Svalbard
Institute of Marine Research, Fram Centre, Tromsø, Norway
Jennifer S. Clarke
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Stefano Cozzi
CNR-ISMAR Istituto di Scienze Marine, Trieste, Italy
Agneta Fransson
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Thomas Juul-Pedersen
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Mie H. S. Winding
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Lorenz Meire
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Nuuk, Greenland
Royal Netherlands Institute for Sea Research, and Utrecht
University, Yerseke, the Netherlands
Related authors
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Preprint under review for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Gabrielle Emma Kleber, Leonard Magerl, Alexandra V. Turchyn, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1273, https://doi.org/10.5194/egusphere-2024-1273, 2024
Short summary
Short summary
Our research on Svalbard has uncovered that melting glaciers can release large amounts of methane, a potent greenhouse gas. By studying a glacier over two summers, we found that its river was highly concentrated in methane. This suggests that as the Arctic warms and glaciers melt, they could be a significant source of methane emissions. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as similar processes may occur across the Arctic.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Johnna M. Holding, Stiig Markager, Thomas Juul-Pedersen, Maria L. Paulsen, Eva F. Møller, Lorenz Meire, and Mikael K. Sejr
Biogeosciences, 16, 3777–3792, https://doi.org/10.5194/bg-16-3777-2019, https://doi.org/10.5194/bg-16-3777-2019, 2019
Short summary
Short summary
Phytoplankton sustain important fisheries along the coast of Greenland. However, climate change is causing severe melting of the Greenland Ice Sheet, and continued melting has the potential to alter fjord ecosystems. We investigate how freshwater from the ice sheet is impacting the environment of one fjord in northeast Greenland, causing a low production of phytoplankton. This fjord may be a model for how some fjord ecosystems will be altered following increased melting and glacial retreat.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Roberta Sciascia, Maristella Berta, Daniel F. Carlson, Annalisa Griffa, Monica Panfili, Mario La Mesa, Lorenzo Corgnati, Carlo Mantovani, Elisa Domenella, Erick Fredj, Marcello G. Magaldi, Raffaele D'Adamo, Gianfranco Pazienza, Enrico Zambianchi, and Pierre-Marie Poulain
Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, https://doi.org/10.5194/os-14-1461-2018, 2018
Short summary
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Christian Schlosser, Katrin Schmidt, Alfred Aquilina, William B. Homoky, Maxi Castrillejo, Rachel A. Mills, Matthew D. Patey, Sophie Fielding, Angus Atkinson, and Eric P. Achterberg
Biogeosciences, 15, 4973–4993, https://doi.org/10.5194/bg-15-4973-2018, https://doi.org/10.5194/bg-15-4973-2018, 2018
Short summary
Short summary
Iron (Fe) emanating from the South Georgia shelf system fuels large phytoplankton blooms downstream of the island. However, the actual supply mechanisms of Fe are unclear. We found that shelf-sediment-derived iron and iron released from Antarctic krill control the Fe distribution in the shelf waters around South Georgia. The majority of the Fe appears to be derived from recycling of Fe-enriched particles that are transported with the water masses into the bloom region.
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Laurence Gray, David Burgess, Luke Copland, Thorben Dunse, Kirsty Langley, and Geir Moholdt
The Cryosphere, 11, 1041–1058, https://doi.org/10.5194/tc-11-1041-2017, https://doi.org/10.5194/tc-11-1041-2017, 2017
Short summary
Short summary
We use surface height data from west Greenland and Devon Ice Cap to check the performance of the new interferometric mode of the ESA CryoSat radar altimeter. The detailed height comparison allows an improved system calibration and processing methodology and measurement of the height of supraglacial lakes which form each summer around the periphery of the Greenland Ice Cap. The advantages of the SARIn mode suggest that future satellite radar altimeters for glacial ice should use this technology.
Laurine D. W. Burdorf, Anton Tramper, Dorina Seitaj, Lorenz Meire, Silvia Hidalgo-Martinez, Eva-Maria Zetsche, Henricus T. S. Boschker, and Filip J. R. Meysman
Biogeosciences, 14, 683–701, https://doi.org/10.5194/bg-14-683-2017, https://doi.org/10.5194/bg-14-683-2017, 2017
Short summary
Short summary
Recently, long filamentous bacteria have been reported to conduct electrons over centimetre distances in marine sediments. These so-called cable bacteria have an
electricity-based metabolism, effectively turning the seafloor into a natural battery. In this study we demonstrate a global occurrence of these cable bacteria in marine sediments, spanning a large range of climate zones (off Greenland, the USA, Australia, the Netherlands) and a large range of coastal habitats.
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks
The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, https://doi.org/10.5194/tc-10-1089-2016, 2016
Short summary
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
L. Gray, D. Burgess, L. Copland, M. N. Demuth, T. Dunse, K. Langley, and T. V. Schuler
The Cryosphere, 9, 1895–1913, https://doi.org/10.5194/tc-9-1895-2015, https://doi.org/10.5194/tc-9-1895-2015, 2015
Short summary
Short summary
We show that the Cryosat (CS) radar altimeter can measure elevation change on a variety of Arctic ice caps. With the frequent coverage of Cryosat it is even possible to track summer surface height loss due to extensive melt; no other satellite altimeter has been able to do this. However, we also show that under cold conditions there is a bias between the surface and Cryosat detected elevation which varies with the conditions of the upper snow and firn layers.
M. P. Humphreys, E. P. Achterberg, A. M. Griffiths, A. McDonald, and A. J. Boyce
Earth Syst. Sci. Data, 7, 127–135, https://doi.org/10.5194/essd-7-127-2015, https://doi.org/10.5194/essd-7-127-2015, 2015
Short summary
Short summary
We present measurements of the stable carbon isotope composition of seawater dissolved inorganic carbon. The samples were collected during two research cruises in boreal summer 2012 in the northeastern Atlantic and Nordic Seas. The results can be used to investigate the marine carbon cycle, providing information about biological productivity and oceanic uptake of anthropogenic carbon dioxide.
L. Meire, D. H. Søgaard, J. Mortensen, F. J. R. Meysman, K. Soetaert, K. E. Arendt, T. Juul-Pedersen, M. E. Blicher, and S. Rysgaard
Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, https://doi.org/10.5194/bg-12-2347-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the biogeochemistry of the adjacent fjord systems and continental shelves. Here we present seasonal observations of the carbonate system in the surface waters of a west Greenland tidewater outlet glacier fjord. Our data reveal a permanent undersaturation of CO2 in the surface layer of the entire fjord and adjacent shelf, creating a high annual uptake of 65gCm-2yr-1.
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, https://doi.org/10.5194/tc-9-197-2015, 2015
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Cantoni, K. Schroeder, and G. Civitarese
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, https://doi.org/10.5194/os-10-69-2014, 2014
M. Mattsdotter Björk, A. Fransson, A. Torstensson, and M. Chierici
Biogeosciences, 11, 57–73, https://doi.org/10.5194/bg-11-57-2014, https://doi.org/10.5194/bg-11-57-2014, 2014
Related subject area
Discipline: Glaciers | Subject: Ocean Interactions
Spatiotemporal distributions of icebergs in a temperate fjord: Columbia Fjord, Alaska
Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
Sarah U. Neuhaus, Slawek M. Tulaczyk, and Carolyn Branecky Begeman
The Cryosphere, 13, 1785–1799, https://doi.org/10.5194/tc-13-1785-2019, https://doi.org/10.5194/tc-13-1785-2019, 2019
Short summary
Short summary
Relatively few studies have been carried out on icebergs inside fjords, despite the fact that the majority of recent sea level rise has resulted from glaciers terminating in fjords. We examine the size and spatial distribution of icebergs in Columbia Fjord, Alaska, over a period of 8 months to determine their influence on fjord dynamics.
Till J. W. Wagner, Fiamma Straneo, Clark G. Richards, Donald A. Slater, Laura A. Stevens, Sarah B. Das, and Hanumant Singh
The Cryosphere, 13, 911–925, https://doi.org/10.5194/tc-13-911-2019, https://doi.org/10.5194/tc-13-911-2019, 2019
Short summary
Short summary
This study shows how complex and varied the processes are that determine the frontal position of tidewater glaciers. Rather than uniform melt or calving rates, a single (medium-sized) glacier can feature regions that retreat almost exclusively due to melting and other regions that retreat only due to calving. This has far-reaching consequences for our understanding of how glaciers retreat or advance.
Cited articles
Achterberg, E. P., Steigenberger, S., Marsay, C. M., Lemoigne, F. A. C.,
Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A.,
and Tanhua, T.: Iron Biogeochemistry in the High Latitude North Atlantic
Ocean, Sci. Rep., 8, 1283, https://doi.org/10.1038/s41598-018-19472-1, 2018.
Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., and Box, J.
E.: Abrupt shift in the observed runoff from the southwestern Greenland ice
sheet, Sci. Adv., 3, e1701169, https://doi.org/10.1126/sciadv.1701169, 2017.
Andersen, O. G. N.: Primary production, illumination and hydrography in
Jørgen Brønlund Fjord, North Greenland, in: Meddelelser om Grønland,
Nyt Nordisk Forlag, København, 1977.
Annett, A. L., Skiba, M., Henley, S. F., Venables, H. J., Meredith, M. P.,
Statham, P. J., and Ganeshram, R. S.: Comparative roles of upwelling and
glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula, Mar.
Chem., 176, 21–33, https://doi.org/10.1016/j.marchem.2015.06.017, 2015.
Annett, A. L., Fitzsimmons, J. N., Séguret, M. J. M., Lagerström,
M., Meredith, M. P., Schofield, O., and Sherrell, R. M.: Controls on
dissolved and particulate iron distributions in surface waters of the
Western Antarctic Peninsula shelf, Mar. Chem., 196, 81–97,
https://doi.org/10.1016/j.marchem.2017.06.004, 2017.
Arendt, K. E., Nielsen, T. G., Rysgaard, S., and Tonnesson, K.: Differences
in plankton community structure along the Godthabsfjord, from the Greenland
Ice Sheet to offshore waters, Mar. Ecol. Prog. Ser., 401, 49–62,
https://doi.org/10.3354/meps08368, 2010.
Arendt, K. E., Dutz, J., Jonasdottir, S. H., Jung-Madsen, S., Mortensen, J.,
Moller, E. F., and Nielsen, T. G.: Effects of suspended sediments on copepods
feeding in a glacial influenced sub-Arctic fjord, J. Plankton Res., 33,
1526–1537, https://doi.org/10.1093/plankt/fbr054, 2011.
Arendt, K. E., Juul-Pedersen, T., Mortensen, J., Blicher, M. E., and
Rysgaard, S.: A 5-year study of seasonal patterns in mesozooplankton
community structure in a sub-Arctic fjord reveals dominance of Microsetella
norvegica (Crustacea, Copepoda), J. Plankton Res., 35, 105–120,
https://doi.org/10.1093/plankt/fbs087, 2013.
Arimitsu, M. L., Piatt, J. F., Madison, E. N., Conaway, J. S., and
Hillgruber, N.: Oceanographic gradients and seabird prey community dynamics
in glacial fjords, Fish. Oceanogr., 21, 148–169,
https://doi.org/10.1111/j.1365-2419.2012.00616.x, 2012.
Arimitsu, M. L., Piatt, J. F., and Mueter, F.: Influence of glacier runoff on
ecosystem structure in Gulf of Alaska fjords, Mar. Ecol. Prog. Ser., 560,
19–40, https://doi.org/10.3354/meps11888, 2016.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm,
Å. K., Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.: Melting
glaciers stimulate large summer phytoplankton blooms in southwest Greenland
waters, Geophys. Res. Lett., 44, 6278–6285, https://doi.org/10.1002/2017GL073583,
2017.
Azetsu-Scott, K. and Syvitski, J. P. M.: Influence of melting icebergs on
distribution, characteristics and transport of marine particles in an East
Greenland fjord, J. Geophys. Res., 104, 5321, https://doi.org/10.1029/1998JC900083,
1999.
Baggesen, C., Moestrup, Ø., and Daugbjer N.: Molecular phylogeny and toxin
profiles of Alexandrium tamarense (Lebour) Balech (Dinophyceae) from the
west coast of Greenland, Harmful Algae, 19, 108–116,
https://doi.org/10.1016/j.hal.2012.06.005, 2012.
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M.,
van den Broeke, M. R., and Noel, B.: Land Ice Freshwater Budget of the Arctic
and North Atlantic Oceans: 1. Data, Methods, and Results, J. Geophys. Res.-Ocean., 123, 1827–1837, https://doi.org/10.1002/2017JC013605, 2018.
Barker, J. D., Sharp, M. J., Fitzsimons, S. J., and Turner, R. J.: Abundance
and dynamics of dissolved organic carbon in glacier systems, Arct. Antarct.
Alp. Res., 38, 163–172,
https://doi.org/10.1657/1523-0430(2006)38[163:aadodo]2.0.co;2, 2006.
Beaird, N. L., Straneo, F., and Jenkins, W.: Export of strongly diluted
Greenland meltwater from a major glacial fjord, Geophys. Res. Lett., 43, 4163–4170,
https://doi.org/10.1029/2018GL077000, 2018.
Beaton, A. D., Cardwell, C. L., Thomas, R. S., Sieben, V. J., Legiret, F.
E., Waugh, E. M., Statham, P. J., Mowlem, M. C., and Morgan, H.: Lab-on-Chip
Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters,
Environ. Sci. Technol., 46, 9548–9556, https://doi.org/10.1021/es300419u, 2012.
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., and Feely,
R. A.: Dissolution Dominating Calcification Process in Polar Pteropods Close
to the Point of Aragonite Undersaturation, PLoS One, 9, e109183,
https://doi.org/10.1371/journal.pone.0109183, 2014.
Bendtsen, J., Mortensen, J., and Rysgaard, S.: Seasonal surface layer
dynamics and sensitivity to runoff in a high Arctic fjord (Young
Sound/Tyrolerfjord, 74∘ N), J. Geophys. Res.-Ocean., 119,
6461–6478, https://doi.org/10.1002/2014JC010077, 2014.
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for
glacial ice melt in a west Greenland tidewater outlet glacier fjord: The
role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095, https://doi.org/10.1002/2015GL063846, 2015.
Benetti, M., Reverdin, G., Clarke, J. S., Tynan, E., Holliday, N. P.,
Torres-Valdes, S., Lherminier, P., and Yashayaev, I.: Sources and
distribution of fresh water around Cape Farewell in 2014, J. Geophys. Res.-Ocean., 124, 9404–9416, https://doi.org/10.1029/2019JC015080, 2019.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P.
B., and Charette, M. A.: Greenland meltwater as a significant and potentially
bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278,
https://doi.org/10.1038/ngeo1746, 2013a.
Bhatia, M. P., Das, S. B., Xu, L., Charette, M. A., Wadham, J. L., and
Kujawinski, E. B.: Organic carbon export from the Greenland ice sheet,
Geochim. Cosmochim. Acta, 109, 329–344, https://doi.org/10.1016/j.gca.2013.02.006,
2013b.
Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A., and Kujawinski, E. B.: Molecular characterization of dissolved organic matter associated with the Greenland ice sheet, Geochim. Cosmochim. Acta, 74, 3768–3784, https://doi.org/10.1016/j.gca.2010.03.035, 2010.
Blain, S., Treguer, P., Belviso, S., Bucciarelli, E., Denis, M., Desabre,
S., Fiala, M., Jezequel, V. M., Le Fevre, J., Mayzaud, P., Marty, J. C., and
Razouls, S.: A biogeochemical study of the island mass effect in the context
of the iron hypothesis: Kerguelen Islands, Southern Ocean, Deep. Res. Part
I, 48, 163–187, 2001.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change, J. Geophys. Res.-Earth Surf., 119,
717–730, 2014.
Boone, W., Rysgaard, S., Carlson, D. F., Meire, L., Kirillov, S., Mortensen,
J., Dmitrenko, I., Vergeynst, L., and Sejr, M. K.: Coastal Freshening
Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study
From 2003 to 2015, Geophys. Res. Lett., 45, 2726–2733,
https://doi.org/10.1002/2017GL076591, 2018.
Bowie, A. R., van der Merwe, P., Quéroué, F., Trull, T., Fourquez, M., Planchon, F., Sarthou, G., Chever, F., Townsend, A. T., Obernosterer, I., Sallée, J.-B., and Blain, S.: Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2, Biogeosciences, 12, 4421–4445, https://doi.org/10.5194/bg-12-4421-2015, 2015.
Box, J. E.: Survey of Greenland instrumental temperature records:
1873–2001, Int. J. Climatol., 22, 1829–1847, https://doi.org/10.1002/joc.852, 2002.
Boyle, E. A., Edmond, J. M., and Sholkovitz, E. R.: Mechanism of iron removal
in estuaries, Geochim. Cosmochim. Acta, 41, 1313–1324,
https://doi.org/10.1016/0016-7037(77)90075-8, 1977.
Brown, G. H., Sharp, M. J., Tranter, M., Gurnell, A. M., and Nienow, P. W.:
Impact of post-mixing chemical reactions on the major ion chemistry of bulk
meltwaters draining the haut glacier d'arolla, valais, Switzerland, Hydrol.
Process., 8, 465–480, https://doi.org/10.1002/hyp.3360080509, 1994.
Brown, M. T., Lippiatt, S. M., and Bruland, K. W.: Dissolved aluminum,
particulate aluminum, and silicic acid in northern Gulf of Alaska coastal
waters: Glacial/riverine inputs and extreme reactivity, Mar. Chem.,
122, 160–175, https://doi.org/10.1016/j.marchem.2010.04.002, 2010.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of an
oceanic gyre, Nature, 551, 242–246, https://doi.org/10.1038/nature24063, 2017.
Bucciarelli, E., Blain, S., and Treguer, P.: Iron and manganese in the wake
of the Kerguelen Islands (Southern Ocean), Mar. Chem., 73, 21–36, 2001.
Bullard, J. E.: Contemporary glacigenic inputs to the dust cycle, Earth
Surf. Process. Landf., 38, 71–89, https://doi.org/10.1002/esp.3315, 2013.
Cable, S., Christiansen, H. H., Westergaard-Nielsen, A., Kroon, A., and
Elberling, B.: Geomorphological and cryostratigraphical analyses of the
Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans,
Geomorphology, 303, 504–523, https://doi.org/10.1016/j.geomorph.2017.11.003, 2018.
Calleja, M. L., Kerhervé, P., Bourgeois, S., Kędra, M., Leynaert,
A., Devred, E., Babin, M., and Morata, N.: Effects of increase glacier
discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high
Arctic fjord, Prog. Oceanogr., 159, 195–210,
https://doi.org/10.1016/j.pocean.2017.07.005, 2017.
Cantoni, C., Hopwood, M., Clarke, J., Chiggiato, J., Achterberg, E. P., and
Cozzi, S.: Hydrological, biogeochemical and carbonate system data in coastal
waters and in glacier drainage systems in Kongsfjorden (Svalbard), during
July–August 2016, Data set, PANGAEA, https://doi.org/10.1594/PANGAEA.904171, 2019.
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M., and Charette, M. A.:
Nutrient release to oceans from buoyancy-driven upwelling at Greenland
tidewater glaciers, Nat. Geosci., 12, 34–39, https://doi.org/10.1038/s41561-018-0268-4,
2019.
Carlson, D. F. and Rysgaard, S.: Adapting open-source drone autopilots for
real-time iceberg observations, MethodsX, 5, 1059–1072,
https://doi.org/10.1016/j.mex.2018.09.003, 2018.
Carlson, D. F., Boone, W., Meire, L., Abermann, J., and Rysgaard, S.: Bergy
Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed
by the Expendable Ice Tracker, Front. Mar. Sci., 4, 276,
https://doi.org/10.3389/fmars.2017.00276, 2017.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Modeling Turbulent Subglacial Meltwater Plumes:
Implications for Fjord-Scale Buoyancy-Driven Circulation, J. Phys.
Oceanogr., 45, 2169–2185, https://doi.org/10.1175/JPO-D-15-0033.1, 2015.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170,
2016.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier
fjords, J. Geophys. Res.-Ocean., 122, 6611–6629, https://doi.org/10.1002/2017JC012962, 2017.
Carroll, D., Sutherland, D. A., Curry, B., Nash, J. D., Shroyer, E. L.,
Catania, G. A., Stearns, L. A., Grist, J. P., Lee, C. M., and de Steur, L.:
Subannual and Seasonal Variability of Atlantic-Origin Waters in Two Adjacent
West Greenland Fjords, J. Geophys. Res.-Ocean., 123, 6670–6687,
https://doi.org/10.1029/2018JC014278, 2018.
Cauvy-Fraunié, S. and Dangles, O.: A global synthesis of biodiversity
responses to glacier retreat, Nat. Ecol. Evol., 3, 1675–1685,
https://doi.org/10.1038/s41559-019-1042-8, 2019.
Cauwet, G. and Sidorov, I.: The biogeochemistry of Lena River: organic
carbon and nutrients distribution, Mar. Chem., 53, 211–227,
https://doi.org/10.1016/0304-4203(95)00090-9, 1996.
Charette, M. A. and Sholkovitz, E. R.: Oxidative precipitation of
groundwater-derived ferrous iron in the subterranean estuary of a coastal
bay, Geophys. Res. Lett., 29, 85, https://doi.org/10.1029/2001GL014512, 2002.
Charette, M. A., Lam, P. J., Lohan, M. C., Kwon, E. Y., Hatje, V., Jeandel,
C., Shiller, A. M., Cutter, G. A., Thomas, A., Boyd, P. W., Homoky, W. B.,
Milne, A., Thomas, H., Andersson, P. S., Porcelli, D., Tanaka, T., Geibert,
W., Dehairs, F., and Garcia-Orellana, J.: Coastal ocean and shelf-sea
biogeochemical cycling of trace elements and isotopes: lessons learned from
GEOTRACES, Philos. Trans. R. Soc. A, 374,
20160076, https://doi.org/10.1098/rsta.2016.0076, 2016.
Chierici, M. and Fransson, A.: Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421–2431, https://doi.org/10.5194/bg-6-2421-2009, 2009.
Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., Box, J. E., and
Reeh, N.: Sediment plume response to surface melting and supraglacial lake
drainages on the Greenland ice sheet, J. Glaciol., 55, 1072–1082,
https://doi.org/10.3189/002214309790794904, 2009.
Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., and Box, J. E.: Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet, The Cryosphere, 6, 1–19, https://doi.org/10.5194/tc-6-1-2012, 2012.
Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877–1882, https://doi.org/10.5194/bg-6-1877-2009, 2009.
Comeau, S., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Response of
the Arctic Pteropod Limacina helicina to Projected Future Environmental
Conditions, PLoS One, 5, e11362, https://doi.org/10.1371/journal.pone.0011362, 2010.
Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R. L., Verheggen, B.,
Maibach, E. W., Carlton, J. S., Lewandowsky, S., Skuce, A. G., and Green, S.
A.: Consensus on consensus: a synthesis of consensus estimates on
human-caused global warming, Environ. Res. Lett., 11, 48002, https://doi.org/10.1088/1748-9326/11/4/048002, 2016.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J.
J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers
(δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,
Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Coupel, P., Ruiz-Pino, D., Sicre, M. A., Chen, J. F., Lee, S. H.,
Schiffrine, N., Li, H. L., and Gascard, J. C.: The impact of freshening on
phytoplankton production in the Pacific Arctic Ocean, Prog. Oceanogr., 131,
113–125, https://doi.org/10.1016/j.pocean.2014.12.003, 2015.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the
impact of glacial runoff on fjord circulation and submarine melt rate using
a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Ocean., 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015.
Crusius, J., Schroth, A. W., Gasso, S., Moy, C. M., Levy, R. C., and Gatica,
M.: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and
meteorological controls and their importance as a source of bioavailable
iron, Geophys. Res. Lett., 38, 06602, https://doi.org/10.1029/2010gl046573, 2011.
Crusius, J., Schroth, A. W., Resing, J. A., Cullen, J., and Campbell, R. W.:
Seasonal and spatial variabilities in northern Gulf of Alaska surface water
iron concentrations driven by shelf sediment resuspension, glacial
meltwater, a Yakutat eddy, and dust, Global Biogeochem. Cy., 31,
942–960, https://doi.org/10.1002/2016GB005493, 2017.
Csank, A. Z., Czimczik, C. I., Xu, X., and Welker, J. M.: Seasonal patterns
of riverine carbon sources and export in NW Greenland, J. Geophys. Res.-Biogeosci., 124, 840–856, https://doi.org/10.1029/2018JG004895, 2019.
Cushman-Roisin, B., Asplin, L., and Svendsen, H.: Upwelling in broad fjords,
Cont. Shelf Res., 14, 1701–1721, https://doi.org/10.1016/0278-4343(94)90044-2,
1994.
De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., and
Navarro, F.: Surface emergence of glacial plumes determined by fjord
stratification, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2019-264, in review, 2020.
Debaar, H. J. W.: VonLiebig Law of the minimum and plankton ecology
(1899–1991), Prog. Oceanogr., 33, 347–386,
https://doi.org/10.1016/0079-6611(94)90022-1, 1994.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants
for the dissociation of carbonic acid in seawater media, Deep Sea Res. Part
A, 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf
ecosystem of the Arctic Ocean: a review, Mar. Chem., 83, 103–120,
https://doi.org/10.1016/S0304-4203(03)00105-1, 2003.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Ducklow, H. W., Vernet, M., and Prezelin, B.: Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991–2019, ver 8, Environmental Data Initiative, https://doi.org/10.6073/pasta/9611089f65d3cbd0801204d174eee947, 2017.
Dugdale, R. C., Wilkerson, F. P., and Minas, H. J.: The role of a silicate
pump in driving new production, Deep. Res. I, 42, 697–719, 1995.
Egge, J. K. and Aksnes, D. L.: Silicate as regulating nutrient in
phytoplankton competition, Mar. Ecol. Prog. Ser., 83, 281–289, 1992.
Egge, J. K. and Heimdal, B. R.: Blooms of phytoplankton including Emiliania
huxleyi (Haptophyta). Effects of nutrient supply in different N: P ratios,
Sarsia, 79, 333–348, https://doi.org/10.1080/00364827.1994.10413565, 1994.
Ellegaard, M. and Ribeiro, S.: The long-term persistence of phytoplankton
resting stages in aquatic `seed banks,' Biol. Rev., 93, 166–183,
https://doi.org/10.1111/brv.12338, 2018.
Emmerton, C. A., Lesack, L. F. W., and Vincent, W. F.: Nutrient and organic
matter patterns across the Mackenzie River, estuary and shelf during the
seasonal recession of sea-ice, J. Mar. Syst., 74, 741–755, https://doi.org/10.1016/j.jmarsys.2007.10.001, 2008.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Enderlin, E. M., Carrigan, C. J., Kochtitzky, W. H., Cuadros, A., Moon, T., and Hamilton, G. S.: Greenland iceberg melt variability from high-resolution satellite observations, The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, 2018.
Ericson, Y., Falck, E., Chierici, M., Fransson, A., and Kristiansen, S.:
Marine CO2 system variability in a high arctic tidewater-glacier fjord
system, Tempelfjorden, Svalbard, Cont. Shelf Res., 181, 1–13,
https://doi.org/10.1016/j.csr.2019.04.013, 2019.
Etherington, L. L. and Hooge, P. N.: Oceanography of Glacier Bay, Alaska:
Implications for biological patterns in a glacial fjord estuary, Estuar. Coast., 30, 927–944, 2007.
Evans, W., Mathis, J. T., and Cross, J. N.: Calcium carbonate corrosivity in an Alaskan inland sea, Biogeosciences, 11, 365–379, https://doi.org/10.5194/bg-11-365-2014, 2014.
Fransson, A. and Chierici, M.: Marine CO2 system data for the Svalbard
fjord Kongsfjorden and the West-Spitsbergen shelf in July 2012–2014, Data
set]. Norwegian Polar Institute, https://doi.org/10.21334/npolar.2019.e53eae53, 2019.
Fransson, A., Chierici, M., Nomura, D., Granskog, M. A., Kristiansen, S.,
Martma, T., and Nehrke, G.: Effect of glacial drainage water on the CO2
system and ocean acidification state in an Arctic tidewater-glacier fjord
during two contrasting years, J. Geophys. Res.-Ocean., 120, 2413–2429,
https://doi.org/10.1002/2014JC010320, 2015.
Fransson, A., Chierici, M., Hop, H., Findlay, H. S., Kristiansen, S., and
Wold, A.: Late winter-to-summer change in ocean acidification state in
Kongsfjorden, with implications for calcifying organisms, Polar Biol.,
39, 1841–1857, https://doi.org/10.1007/s00300-016-1955-5, 2016.
Fried, M. J., Catania, G. A., Stearns, L. A., Sutherland, D. A.,
Bartholomaus, T. C., Shroyer, E., and Nash, J.: Reconciling drivers of
seasonal terminus advance and retreat at 13 central west Greenland tidewater
glaciers, J. Geophys. Res.-Earth, 123, 1590–1607, 2018.
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G. E., Canepa, A.,
Wölfl, A.-C., Hass, C. H., Williams, G. N., and Schloss, I. R.: Glacial
melting: an overlooked threat to Antarctic krill, Sci. Rep., 6, 27234,
https://doi.org/10.1038/srep27234, 2016.
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuroczy, C.-E., De Baar, H.
J. W., Mills, M. M., van Dijken, G. L., van Haren, H., and Arrigo, K. R.:
Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea
(Southern Ocean): Iron biogeochemistry, Deep. Res. Part Ii, 71–76, 16–31, https://doi.org/10.1016/j.dsr2.2012.03.007, 2012.
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H.,
and Buylaert, J.-P.: Late Quaternary sedimentation and permafrost
development in a Svalbard fjord-valley, Norwegian high Arctic,
Sedimentology, 65, 2531–2558, https://doi.org/10.1111/sed.12476, 2018.
Gladish, C. V, Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje,
J.: Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability
and Renewal of Ilulissat Icefjord Waters, 2001–14, J. Phys. Oceanogr.,
45, 3–32, https://doi.org/10.1175/JPO-D-14-0044.1, 2014.
Gledhill, M. and Buck, K. N.: The organic complexation of iron in the marine
environment: a review, Front. Microbiol., 3, 69,
https://doi.org/10.3389/fmicb.2012.00069, 2012.
Glud, R. N., Risgaard-Petersen, M., Thamdrup, B., Fossing, H., and Rysgaard,
S.: Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE
Greenland), Mar. Ecol. Prog. Ser., 206, 59–71, https://doi.org/10.3354/meps206059,
2000.
González-Bergonzoni, I., L., J. K., Anders, M., Frank, L., Erik, J., and
A., D. T.: Small birds, big effects: the little auk (Alle alle) transforms
high Arctic ecosystems, P. Roy. Soc. B, 284, 20162572,
https://doi.org/10.1098/rspb.2016.2572, 2017.
Grand, M. M., Clinton-Bailey, G. S., Beaton, A. D., Schaap, A. M., Johengen,
T. H., Tamburri, M. N., Connelly, D. P., Mowlem, M. C., and Achterberg, E.
P.: A Lab-On-Chip Phosphate Analyzer for Long-term In Situ Monitoring at
Fixed Observatories: Optimization and Performance Evaluation in Estuarine
and Oligotrophic Coastal Waters, Front. Mar. Sci., 4, 255,
https://doi.org/10.3389/fmars.2017.00255, 2017.
Grand, M. M., Laes-Huon, A., Fietz, S., Resing, J. A., Obata, H., Luther, G.
W., Tagliabue, A., Achterberg, E. P., Middag, R., Tovar-Sánchez, A., and
Bowie, A. R.: Developing Autonomous Observing Systems for Micronutrient
Trace Metals, Front. Mar. Sci., 6, 35, https://doi.org/10.3389/fmars.2019.00035, 2019.
Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M. A., Hop,
H., Kauko, H. M., Kristiansen, S., Myhre, P. I., Pavlov, A. K., Pramanik,
A., Tatarek, A., Torsvik, T., Wiktor, J. M., Wold, A., Wulff, A., Steen, H.,
and Assmy, P.: Tidewater Glaciers and Bedrock Characteristics Control the
Phytoplankton Growth Environment in a Fjord in the Arctic, Front. Mar. Sci.,
6, 254, https://doi.org/10.3389/fmars.2019.00254, 2019.
Harrison, W. G., Platt, T., and Irwin, B.: Primary Production and Nutrient
Assimilation by Natural Phytoplankton Populations of the Eastern Canadian
Arctic, Can. J. Fish. Aquat. Sci., 39, 335–345, https://doi.org/10.1139/f82-046,
1982.
Hart, T. J.: Discovery Reports, Discov. Reports, VIII, 1–268, 1934.
Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A.,
Simmons, S.-L., Chandler, D., Tedstone, A., and Nienow, P.: The Greenland Ice
Sheet as a hot spot of phosphorus weathering and export in the Arctic,
Global Biogeochem. Cy., 30, 191–210, https://doi.org/10.1002/2015GB005237, 2016.
Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G.,
Statham, P. J., Tedstone, A., Nienow, P., Lee, K., and Telling, J.: Ice
sheets as a significant source of highly reactive nanoparticulate iron to
the oceans, Nat. Commun., 5, 3929, https://doi.org/10.1038/ncomms4929, 2014.
Hawkings, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M.,
Tedstone, A., Nienow, P., and Raiswell, R.: Ice sheets as a missing source of
silica to the polar oceans, Nat. Commun., 8, 14198, https://doi.org/10.1038/ncomms14198,
2017.
Hegseth, E. N. and Tverberg, V.: Effect of Atlantic water inflow on timing
of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden,
Svalbard), J. Mar. Syst., 113–114, 94–105,
https://doi.org/10.1016/j.jmarsys.2013.01.003, 2013.
Helly, J. J., Kaufmann, R. S., Stephenson Jr., G. R., and Vernet, M.:
Cooling, dilution and mixing of ocean water by free-drifting icebergs in the
Weddell Sea, Deep. Res. Part I, 58,
1346–1363, https://doi.org/10.1016/j.dsr2.2010.11.010, 2011.
Hendry, K. R., Huvenne, V. A. I., Robinson, L. F., Annett, A., Badger, M.,
Jacobel, A. W., Ng, H. C., Opher, J., Pickering, R. A., Taylor, M. L.,
Bates, S. L., Cooper, A., Cushman, G. G., Goodwin, C., Hoy, S., Rowland, G.,
Samperiz, A., Williams, J. A., Achterberg, E. P., Arrowsmith, C.,
Brearley, J. A., Henley, S. F., Krause, J. W., Leng, M. J., Li, T., McManus, J.
F., Meredith, M. P., Perkins, R., and Woodward, E. M. S.: The biogeochemical
impact of glacial meltwater from Southwest Greenland, Prog. Oceanogr., 176,
102126, https://doi.org/10.1016/j.pocean.2019.102126, 2019.
Henson, S., Le Moigne, F., and Giering, S.: Drivers of Carbon Export
Efficiency in the Global Ocean, Global Biogeochem. Cy., 33, 891–903,
https://doi.org/10.1029/2018GB006158, 2019.
Hessen, D. O., Carroll, J., Kjeldstad, B., Korosov, A. A., Pettersson, L.
H., Pozdnyakov, D., and Sørensen, K.: Input of organic carbon as
determinant of nutrient fluxes, light climate and productivity in the Ob and
Yenisey estuaries, Estuar. Coast Shelf Sci., 88, 53-62,
https://doi.org/10.1016/j.ecss.2010.03.006, 2010.
Hewitt, I. J.: Subglacial Plumes, Annu. Rev. Fluid Mech., 52, 145–169,
https://doi.org/10.1146/annurev-fluid-010719-060252, 2020.
Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S., and Reigstad, M.:
Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton,
protozoans and primary production, Polar Biol., 35, 191–203,
https://doi.org/10.1007/s00300-011-1053-7, 2012.
Hodson, A., Mumford, P., and Lister, D.: Suspended sediment and phosphorus in
proglacial rivers: bioavailability and potential impacts upon the P status
of ice-marginal receiving waters, Hydrol. Process., 18, 2409–2422,
https://doi.org/10.1002/hyp.1471, 2004.
Hodson, A., Nowak, A., and Christiansen, H.: Glacial and periglacial
floodplain sediments regulate hydrologic transfer of reactive iron to a high
arctic fjord, Hydrol. Process., 30, 1219–1229, https://doi.org/10.1002/hyp.10701, 2016.
Hodson, A., Nowak, A., Sabacka, M., Jungblut, A., Navarro, F., Pearce, D.,
Ávila-Jiménez, M. L., Convey, P., and Vieira, G.: Climatically
sensitive transfer of iron to maritime Antarctic ecosystems by surface
runoff, Nat. Commun., 8, 14499, https://doi.org/10.1038/ncomms14499, 2017.
Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M.: The High Arctic
glacial ecosystem: New insights from nutrient budgets, Biogeochemistry, 72, 233–256,
https://doi.org/10.1007/s10533-004-0362-0, 2005.
Höfer, J., Giesecke, R., Hopwood, M. J., Carrera, V., Alarcón, E.,
and González, H. E.: The role of water column stability and wind mixing
in the production/export dynamics of two bays in the Western Antarctic
Peninsula, Prog. Oceanogr., 174, 105–116, https://doi.org/10.1016/j.pocean.2019.01.005,
2019.
Holding, J. M., Duarte, C. M., Delgado-Huertas, A., Soetaert, K., Vonk, J.
E., Agustí, S., Wassmann, P., and Middelburg, J. J.: Autochthonous and
allochthonous contributions of organic carbon to microbial food webs in
Svalbard fjords, Limnol. Oceanogr., 62, 1307–1323, https://doi.org/10.1002/lno.10526, 2017.
Holding, J. M., Markager, S., Juul-Pedersen, T., Paulsen, M. L., Møller, E. F., Meire, L., and Sejr, M. K.: Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off, Biogeosciences, 16, 3777–3792, https://doi.org/10.5194/bg-16-3777-2019, 2019.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast.,
35, 369–382, https://doi.org/10.1007/s12237-011-9386-6, 2011.
Honjo, S. and Manganini, S. J.: Annual biogenic particle fluxes to the
interior of the North Atlantic Ocean; studied at 34∘ N
21∘ W and 48∘ N 21∘ W, Deep Sea Res. Part II, 40, 587–607, https://doi.org/10.1016/0967-0645(93)90034-K,
1993.
Hood, E. and Berner, L.: Effects of changing glacial coverage on the
physical and biogeochemical properties of coastal streams in southeastern
Alaska, J. Geophys. Res., 114, G03001, https://doi.org/10.1029/2009jg000971, 2009.
Hood, E. and Scott, D.: Riverine organic matter and nutrients in southeast
Alaska affected by glacial coverage, Nat. Geosci., 1, 583–587,
https://doi.org/10.1038/ngeo280, 2008.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R.,
D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile
organic matter to the marine environment, Nature, 462, 1044–1047,
https://doi.org/10.1038/nature08580, 2009.
Hood, E., Battin, T. J., Fellman, J., O'neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets, Nat.
Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C.,
Kwasniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Wlodarska-Kowalczuk,
M., Lydersen, C., Weslawski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey,
R. J. G., Lønne, O. J., Zajaczkowski, M., Falk-Petersen, S., Kendall, M.,
Wängberg, S.-Å., Bischof, K., Voronkov, A. Y., Kovaltchouk, N. A.,
Wiktor, J., Poltermann, M., Prisco, G., Papucci, C., and Gerland, S.: The
marine ecosystem of Kongsfjorden, Svalbard, Polar Res., 21, 167–208, 2002.
Hop, H., Assmy, P., Wold, A., Sundfjord, A., Daase, M., Duarte, P.,
Kwasniewski, S., Gluchowska, M., Wiktor, J. M., Tatarek, A., Wiktor, J.,
Kristiansen, S., Fransson, A., Chierici, M., and Vihtakari, M.: Pelagic
Ecosystem Characteristics Across the Atlantic Water Boundary Current From
Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014),
Front. Mar. Sci., 6, 181, https://doi.org/10.3389/fmars.2019.00181, 2019.
Hoppe, H.-G.: Phosphatase activity in the sea, Hydrobiologia, 493,
187–200, https://doi.org/10.1023/A:1025453918247, 2003.
Hopwood, M. J., Connelly, D. P., Arendt, K. E., Juul-Pedersen, T.,
Stinchcombe, M. C., Meire, L., Esposito, M., and Krishna, R.: Seasonal
changes in Fe along a glaciated Greenlandic fjord, Front. Earth Sci., 4, 15,
https://doi.org/10.3389/feart.2016.00015, 2016.
Hopwood, M. J., Cantoni, C., Clarke, J. S., Cozzi, S., and Achterberg, E. P.:
The heterogeneous nature of Fe delivery from melting icebergs, Geochem.
Perspect. Lett., 3, 200–209, https://doi.org/10.7185/geochemlet.1723, 2017.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J.,
Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine
productivity to increased meltwater discharge around Greenland, Nat.
Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M., Harland, R., and
Cage, A. G.: Fjord systems and archives: a review, Geol. Soc. London, Spec.
Publ., 344, 5–15, https://doi.org/10.1144/SP344.2, 2010.
Hudson, B., Overeem, I., McGrath, D., Syvitski, J. P. M., Mikkelsen, A., and Hasholt, B.: MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords, The Cryosphere, 8, 1161–1176, https://doi.org/10.5194/tc-8-1161-2014, 2014.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x,
2018.
Hyacinthe, C. and Van Cappellen, P.: An authigenic iron phosphate phase
in estuarine sediments: composition, formation and chemical reactivity, Mar.
Chem., 91, 227–251, 2004.
Iriarte, J. L., Pantoja, S., and Daneri, G.: Oceanographic Processes in
Chilean Fjords of Patagonia: From small to large-scale studies, Prog.
Oceanogr., 129, 1–7, https://doi.org/10.1016/j.pocean.2014.10.004, 2014.
Iversen, K. R. and Seuthe, L.: Seasonal microbial processes in a
high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria,
picoplankton and nanoflagellates, Polar Biol., 34, 731–749,
https://doi.org/10.1007/s00300-010-0929-2, 2011.
Iversen, M. H. and Robert, M. L.: Ballasting effects of smectite on
aggregate formation and export from a natural plankton community, Mar.
Chem., 175, 18–27, https://doi.org/10.1016/j.marchem.2015.04.009, 2015.
Jackson, R. H., Straneo, F., and Sutherland, D. A.: Externally forced
fluctuations in ocean temperature at Greenland glaciers in non-summer
months, Nat. Geosci., 7, 503–508, https://doi.org/10.1038/ngeo2186, 2014.
Jackson, R. H., Shroyer, E. L., Nash, J. D., Sutherland, D. A., Carroll, D.,
Fried, M. J., Catania, G. A., Bartholomaus, T. C., and Stearns, L. A.:
Near-glacier surveying of a subglacial discharge plume: Implications for
plume parameterizations, Geophys. Res. Lett., 44, 6886–6894,
https://doi.org/10.1002/2017GL073602, 2017.
Jackson, R. H., Lentz, S. J., and Straneo, F.: The Dynamics of Shelf Forcing
in Greenlandic Fjords, J. Phys. Oceanogr., 48, 2799–2827,
https://doi.org/10.1175/JPO-D-18-0057.1, 2018.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice
Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Jensen, H. M., Pedersen, L., Burmeister, A., and Winding Hansen, B.: Pelagic
primary production during summer along 65 to 72∘ N off West
Greenland, Polar Biol., 21, 269–278, https://doi.org/10.1007/s003000050362, 1999.
Johnson, H. L., Münchow, A., Falkner, K. K., and Melling, H.: Ocean
circulation and properties in Petermann Fjord, Greenland, J. Geophys. Res.-Ocean., 116, C01003, https://doi.org/10.1029/2010JC006519, 2011.
Joli, N., Gosselin, M., Ardyna, M., Babin, M., Onda D. F., Tremblay,
J.-É., and Lovejoy, C.: Need for focus on microbial species following ice
melt and changing freshwater regimes in a Janus Arctic Gateway, Sci. Rep.,
8, 9405, https://doi.org/10.1038/s41598-018-27705-6, 2018.
Jones, I. W., Munhoven, G., Tranter, M., Huybrechts, P., and Sharp, M. J.:
Modelled glacial and non-glacial , Si and Ge fluxes since the LGM:
little potential for impact on atmospheric CO2 concentrations and a
potential proxy of continental chemical erosion, the marine Ge∕Si ratio,
Global Planet. Chang., 33, 139–153, https://doi.org/10.1016/S0921-8181(02)00067-X, 2002.
Jouvet, G., Weidmann, Y., Kneib, M., Detert, M., Seguinot, J., Sakakibara,
D.. and Sugiyama, S.: Short-lived ice speed-up and plume water flow captured
by a VTOL UAV give insights into subglacial hydrological system of Bowdoin
Glacier, Remote Sens. Environ., 217, 389–399,
https://doi.org/10.1016/j.rse.2018.08.027, 2018.
Juul-Pedersen, T., Arendt, K. E., Mortensen, J., Blicher, M. E., Søgaard,
D., and Rysgaard, S.: Seasonal and interannual phytoplankton production in a
sub-Arctic tidewater outlet glacier fjord, SW Greenland, Mar. Ecol. Prog.
Ser., 524, 27–38, https://doi.org/10.3354/meps11174, 2015.
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., and
Nomura, D.: Upwelling of macronutrients and dissolved inorganic carbon by a
subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland,
J. Geophys. Res.-Biogeosci., 123, 1666–1682, https://doi.org/10.1029/2017JG004248, 2018.
Kjeldsen, K. K., Mortensen, J., Bendtsen, J., Petersen, D., Lennert, K., and
Rysgaard, S.: Ice-dammed lake drainage cools and raises surface salinities
in a tidewater outlet glacier fjord, west Greenland, J. Geophys. Res.-Surf.,
119, 1310–1321, https://doi.org/10.1002/2013JF003034, 2014.
Klunder, M. B., Bauch, D., Laan, P., de Baar, H. J. W., van Heuven, S., and
Ober, S.: Dissolved iron in the Arctic shelf seas and surface waters of the
central Arctic Ocean: Impact of Arctic river water and ice-melt, J. Geophys.
Res., 117, C01027, https://doi.org/10.1029/2011jc007133, 2012.
Knutz, P. C., Sicre, M.-A., Ebbesen, H., Christiansen, S., and Kuijpers, A.:
Multiple-stage deglacial retreat of the southern Greenland Ice Sheet linked
with Irminger Current warm water transport, Paleoceanography, 26, PA3204,
https://doi.org/10.1029/2010PA002053, 2011.
Kohfeld, K. E. and Harrison, S. P.: DIRTMAP: the geological record of dust,
Earth-Science Rev., 54, 81–114, https://doi.org/10.1016/S0012-8252(01)00042-3, 2001.
Koziorowska, K., Kuliński, K., and Pempkowiak, J.: Deposition, return
flux, and burial rates of nitrogen and phosphorus in the sediments of two
high-Arctic fjords, Oceanologia, 60, 431–445,
https://doi.org/10.1016/j.oceano.2018.05.001, 2018.
Krawczyk, D. W., Witkowski, A., Juul-Pedersen, T., Arendt, K. E., Mortensen,
J., and Rysgaard, S.: Microplankton succession in a SW Greenland tidewater
glacial fjord influenced by coastal inflows and run-off from the Greenland
Ice Sheet, Polar Biol., 38, 1515–1533, https://doi.org/10.1007/s00300-015-1715-y,
2015.
Krawczyk, D. W., Meire, L., Lopes, C., Juul-Pedersen, T., Mortensen, J., Li,
C. L., and Krogh, T.: Seasonal succession, distribution, and diversity of
planktonic protists in relation to hydrography of the Godthåbsfjord
system (SW Greenland), Polar Biol., 41, 2033–2052,
https://doi.org/10.1007/s00300-018-2343-0, 2018.
Kumar, V., Tiwari, M., and Rengarajan, R.: Warming in the Arctic Captured by
productivity variability at an Arctic Fjord over the past two centuries,
PLoS One, 13, e0201456, https://doi.org/10.1371/journal.pone.0201456, 2018.
Kwiatkowski, L., Naar, J., Bopp, L., Aumont, O., Defrance, D., and Couespel,
D.: Decline in Atlantic primary production accelerated by Greenland ice
sheet melt, Geophys. Res. Lett., 46, 11347–11357, https://doi.org/10.1029/2019GL085267, 2019.
Laidre, K. L., Twila, M., Hauser, D. D. W., McGovern, R.,
Heide-Jørgensen, M. P., Rune, D., and Hudson, B.: Use of glacial fronts by
narwhals (Monodon monoceros) in West Greenland, Biol. Lett., 12,
20160457, https://doi.org/10.1098/rsbl.2016.0457, 2016.
Lam, P. J. and Bishop, J. K. B.: The continental margin is a key source of
iron to the HNLC North Pacific Ocean, Geophys. Res. Lett., 35, L07608,
https://doi.org/10.1029/2008gl033294, 2008.
Langen, P. L., Mottram, R. H., Christensen, J. H., Boberg, F., Rodehacke, C.
B., Stendel, M., van As, D., Ahlstrøm, A. P., Mortensen, J., Rysgaard,
S., Petersen, D., Svendsen, K. H., Aðalgeirsdóttir, G., and Cappelen,
J.: Quantifying energy and mass fluxes controlling Godthåbsfjord
freshwater input in a 5-km simulation (1991–2012), J. Climate, 28, 3694–3713, https://doi.org/10.1175/JCLI-D-14-00271.1, 2015.
Larsen, A., Egge, J. K., Nejstgaard, J. C., Di Capua, I., Thyrhaug, R.,
Bratbak, G., and Thingstad, T. F.: Contrasting response to nutrient
manipulation in Arctic mesocosms are reproduced by a minimum microbial food
web model, Limnol. Oceanogr., 60, 360–374, https://doi.org/10.1002/lno.10025, 2015.
Lawson, E. C., Bhatia, M. P., Wadham, J. L., and Kujawinski, E. B.:
Continuous Summer Export of Nitrogen-Rich Organic Matter from the Greenland
Ice Sheet Inferred by Ultrahigh Resolution Mass Spectrometry, Environ. Sci.
Technol., 48, 14248–14257, https://doi.org/10.1021/es501732h, 2014a.
Lawson, E. C., Wadham, J. L., Tranter, M., Stibal, M., Lis, G. P., Butler, C. E. H., Laybourn-Parry, J., Nienow, P., Chandler, D., and Dewsbury, P.: Greenland Ice Sheet exports labile organic carbon to the Arctic oceans, Biogeosciences, 11, 4015–4028, https://doi.org/10.5194/bg-11-4015-2014, 2014b.
Le Bras, I. A.-A., Straneo, F., Holte, J., and Holliday, N. P.: Seasonality
of Freshwater in the East Greenland Current System From 2014 to 2016, J.
Geophys. Res.-Ocean., 123, 8828–8848, https://doi.org/10.1029/2018JC014511, 2018.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A.
S.: High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017.
Lefebvre, K. A., Quakenbush, L., Frame, E., Huntington, K. B., Sheffield,
G., Stimmelmayr, R., Bryan, A., Kendrick, P., Ziel, H., Goldstein, T.,
Snyder, J. A., Gelatt, T., Gulland, F., Dickerson, B., and Gill, V.:
Prevalence of algal toxins in Alaskan marine mammals foraging in a changing
arctic and subarctic environment, Harmful Algae, 55, 13–24,
https://doi.org/10.1016/j.hal.2016.01.007, 2016.
Le Fouest, V., Babin, M., and Tremblay, J.-É.: The fate of riverine nutrients on Arctic shelves, Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, 2013.
Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K.,
Achterberg, E. P., Ceballos-Romero, E., Zubkov, M., and Sanders, R. J.: What
causes the inverse relationship between primary production and export
efficiency in the Southern Ocean?, Geophys. Res. Lett., 43, 4457–4466,
https://doi.org/10.1002/2016GL068480, 2016.
León-Muñoz, J., Urbina, M. A., Garreaud, R., and Iriarte, J. L.:
Hydroclimatic conditions trigger record harmful algal bloom in western
Patagonia (summer 2016), Sci. Rep., 8, 1330,
https://doi.org/10.1038/s41598-018-19461-4, 2018.
Levinsen, H. and Nielsen, T. G.: The trophic role of marine pelagic ciliates
and heterotrophic dinoflagellates in arctic and temperate coastal
ecosystems: A cross-latitude comparison, Limnol. Oceanogr., 47, 427–439,
https://doi.org/10.4319/lo.2002.47.2.0427, 2002.
Liestøl, O.: The glaciers in the Kongsfjorden area, Spitsbergen, Nor.
Geogr. Tidsskr. – Nor. J. Geogr., 42, 231–238,
https://doi.org/10.1080/00291958808552205, 1988.
Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J., and Twining, B. S.:
Free-drifting icebergs as sources of iron to the Weddell Sea, Deep. Res.
Part Ii-Topical Stud. Oceanogr., 58, 1392–1406,
https://doi.org/10.1016/j.dsr2.2010.11.020, 2011.
Lippiatt, S. M., Lohan, M. C., and Bruland, K. W.: The distribution of
reactive iron in northern Gulf of Alaska coastal waters, Mar. Chem.,
121, 187–199, https://doi.org/10.1016/j.marchem.2010.04.007, 2010.
Lischka, S. and Riebesell, U.: Synergistic effects of ocean acidification
and warming on overwintering pteropods in the Arctic, Global Chang. Biol.,
18, 3517–3528, https://doi.org/10.1111/gcb.12020, 2012.
Lischka, S., Büdenbender, J., Boxhammer, T., and Riebesell, U.: Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth, Biogeosciences, 8, 919–932, https://doi.org/10.5194/bg-8-919-2011, 2011.
Lund-Hansen, L. C., Hawes, I., Holtegaard Nielsen, M., Dahllöf, I., and
Sorrell, B. K.: Summer meltwater and spring sea ice primary production,
light climate and nutrients in an Arctic estuary, Kangerlussuaq, west
Greenland, Arctic, Antarct. Alp. Res., 50, S100025,
https://doi.org/10.1080/15230430.2017.1414468, 2018.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M.,
Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø.,
Walczowski, W., Weslawski, J. M., and Zajaczkowski, M.: The importance of
tidewater glaciers for marine mammals and seabirds in Svalbard, Norway, J.
Mar. Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
Maat, D. S., Prins, M. A., and Brussaard, C. P. D.: Sediments from Arctic
Tide-Water Glaciers Remove Coastal Marine Viruses and Delay Host Infection,
Viruses, 11, 123, https://doi.org/10.3390/v11020123, 2019.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and
Singh, H.: Structure and dynamics of a subglacial discharge plume in a
Greenlandic Fjord, J. Geophys. Res.-Ocean., 121, 8670–8688, https://doi.org/10.1002/2016JC011764, 2016.
Markussen, T. N., Elberling, B., Winter, C., and Andersen, T. J.: Flocculated
meltwater particles control Arctic land-sea fluxes of labile iron, Sci.
Rep., 6, 24033, https://doi.org/10.1038/srep24033, 2016.
Marsay, C. M., Barrett, P. M., McGillicuddy, D. J., and Sedwick, P. N.:
Distributions, sources, and transformations of dissolved and particulate
iron on the Ross Sea continental shelf during summer, J. Geophys. Res.-Ocean., 122, 6371–6393, https://doi.org/10.1002/2017JC013068, 2017.
Martin, J. H.: Glacial-interglacial CO2 change?: The iron hypothesis,
Paleoceanography, 5, 1–13, 1990.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, 1990a.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters,
Nature, 345, 156–158, https://doi.org/10.1038/345156a0, 1990b.
Mascarenhas, V. J. and Zielinski, O.: Hydrography-Driven Optical Domains in
the Vaigat-Disko Bay and Godthabsfjord: Effects of Glacial Meltwater
Discharge, Front. Mar. Sci., 6, 335, https://doi.org/10.3389/fmars.2019.00335, 2019.
Mascioni, M., Almandoz, G. O., Cefarelli, A. O., Cusick, A., Ferrario, M. E.,
and Vernet, M.: Phytoplankton composition and bloom formation in unexplored
nearshore waters of the western Antarctic Peninsula, Polar Biol., 42,
1859–1872, https://doi.org/10.1007/s00300-019-02564-7, 2019.
Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., Juul-Pedersen, T., Blicher, M. E., and Rysgaard, S.: Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, 2015.
Meire, L., Meire, P., Struyf, E., Krawczyk, D. W., Arendt, K. E., Yde, J.
C., Juul Pedersen, T., Hopwood, M. J., Rysgaard, S., and Meysman, F. J. R.:
High export of dissolved silica from the Greenland Ice Sheet, Geophys. Res.
Lett., 43, 9173–9182, https://doi.org/10.1002/2016GL070191, 2016a.
Meire, L., Mortensen, J., Rysgaard, S., Bendtsen, J., Boone, W., Meire, P.,
and Meysman, F. J. R.: Spring bloom dynamics in a subarctic fjord influenced
by tidewater outlet glaciers (Godthåbsfjord, SW Greenland), J. Geophys.
Res.-Biogeosci., 121, 1581–1592, https://doi.org/10.1002/2015JG003240, 2016b.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Chang. Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E.,
Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D.,
Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S.,
Robinson, C. T., Tranter, M., and Brown, L. E.: Glacier shrinkage driving
global changes in downstream systems, P. Natl. Acad. Sci. USA, 114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017.
Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven, J. A., Granéli, E., Glibert, P. M., Hansen, P. J., Stoecker, D. K., Thingstad, F., Tillmann, U., Våge, S., Wilken, S., and Zubkov, M. V.: The role of mixotrophic protists in the biological carbon pump, Biogeosciences, 11, 995–1005, https://doi.org/10.5194/bg-11-995-2014, 2014.
Moffat, C.: Wind-driven modulation of warm water supply to a proglacial
fjord, Jorge Montt Glacier, Patagonia, Geophys. Res. Lett., 41,
3943–3950, https://doi.org/10.1002/2014GL060071, 2014.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2018.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov,
I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T.
F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient
limitation, Nat. Geosci, 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Mortensen, J., Lennert, K., Bendtsen, J., and Rysgaard, S.: Heat sources for
glacial melt in a sub-Arctic fjord (Godthabsfjord) in contact with the
Greenland Ice Sheet, J. Geophys. Res., 116, C01013, https://doi.org/10.1029/2010jc006528, 2011.
Mortensen, J., Bendtsen, J., Lennert, K., and Rysgaard, S.: Seasonal
variability of the circulation system in a west Greenland tidewater outlet
glacier fjord, Godthåbsfjord (64∘ N), J. Geophys. Res.-Earth
Surf., 119, 2591–2603, https://doi.org/10.1002/2014JF003267, 2014.
Mortensen, J., Rysgaard, S., Arendt, K. E., Juul-Pedersen, T., Søgaard,
D. H., Bendtsen, J., and Meire, L.: Local Coastal Water Masses Control Heat
Levels in a West Greenland Tidewater Outlet Glacier Fjord, J. Geophys. Res.-Ocean., 123, 8068–8083, https://doi.org/10.1029/2018JC014549, 2018.
Morton, B. R., Taylor, G., and Turner, J. S.: Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. A, 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA,
116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A.,
Głowacki, O., Wojtysiak, K., and Zagórski, P.: Spatiotemporal changes in
the concentration and composition of suspended particulate matter in front
of Hansbreen, a tidewater glacier in Svalbard, Oceanologia, 60, 446–463,
https://doi.org/10.1016/j.oceano.2018.03.001, 2018.
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and
Bruhn, A.: The influence of glacial melt water on bio-optical properties in
two contrasting Greenlandic fjords, Estuar. Coast. Shelf Sci., 163, 72–83,
https://doi.org/10.1016/j.ecss.2015.05.041, 2015.
Nielsdottir, M. C., Moore, C. M., Sanders, R., Hinz, D. J., and Achterberg,
E. P.: Iron limitation of the postbloom phytoplankton communities in the
Iceland Basin, Global Biogeochem. Cy., 23, GB3001, https://doi.org/10.1029/2008gb003410,
2009.
Nielsen, T. G.: Plankton community structure and carbon cycling on the
western coast of Greenland during the stratified summer situation. I.
Hydrography, phytoplankton and bacterioplankton, Aquat. Microb. Ecol.,
16, 205–216, 1999.
Nielsen, T. G., and Hansen, B.: Plankton community structure and carbon
cycling on the western coast of Greenland during and after the sedimentation
of a diatom bloom, Mar. Ecol. Prog. Ser., 125, 239–257, 1995.
Nightingale, A. M., Beaton, A. D., and Mowlem, M. C.: Trends in microfluidic
systems for in situ chemical analysis of natural waters, Sensors Actuators B
Chem., 221, 1398–1405, https://doi.org/10.1016/j.snb.2015.07.091, 2015.
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015.
Normandeau, A., Dietrich, P., Hughes Clarke, J., Van Wychen, W., Lajeunesse,
P., Burgess, D., and Ghienne, J.-F.: Retreat Pattern of Glaciers Controls the
Occurrence of Turbidity Currents on High-Latitude Fjord Deltas (Eastern
Baffin Island), J. Geophys. Res.-Earth Surf., 124, 1559–1571,
https://doi.org/10.1029/2018JF004970, 2019.
Oliver, H., Luo, H., Castelao, R. M., van Dijken, G. L., Mattingly, K.,
Rosen, J. J., Mote, T. L., Arrigo, K. R., Rennermalm, Å. K., Tedesco, M.,
and Yager, P. L.: Exploring the Potential Impact of Greenland Meltwater on
Stratification, Photosynthetically Active Radiation, and Primary Production
in the Labrador Sea, J. Geophys. Res.-Ocean., 123, 2570–2591, https://doi.org/10.1002/2018JC013802,
2018.
Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt,
B., Van Den Broeke, M. R., Noel, B. P. Y., and Morlighem, M.: Substantial
export of suspended sediment to the global oceans from glacial erosion in
Greenland, Nat. Geosci., 10, 859–863, https://doi.org/10.1038/NGEO3046, 2017.
Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean, 1998–2006, J. Geophys. Res.-Ocean., 113, C08005,
https://doi.org/10.1029/2007JC004578, 2008.
Pabortsava, K., Lampitt, R. S., Benson, J., Crowe, C., McLachlan, R., Le
Moigne, F. A. C., Mark Moore, C., Pebody, C., Provost, P., Rees, A. P.,
Tilstone, G. H., and Woodward, E. M. S.: Carbon sequestration in the deep
Atlantic enhanced by Saharan dust, Nat. Geosci., 10, 189–194,
https://doi.org/10.1038/ngeo2899, 2017.
Paulsen, M. L., Nielsen, S. E. B., Müller, O., Møller, E. F.,
Stedmon, C. A., Juul-Pedersen, T., Markager, S., Sejr, M. K., Delgado
Huertas, A., Larsen, A., and Middelboe, M.: Carbon Bioavailability in a High
Arctic Fjord Influenced by Glacial Meltwater, NE Greenland, Front. Mar.
Sci., 4, 176, https://doi.org/10.3389/fmars.2017.00176, 2017.
Paulsen, M. L., Müller, O., Larsen, A., Møller, E. F., Middelboe, M.,
Sejr, M. K., and Stedmon, C.: Biological transformation of Arctic dissolved
organic matter in a NE Greenland fjord, Limnol. Oceanogr., 64, 1014–1033,
https://doi.org/10.1002/lno.11091, 2018.
Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A., and Wilhelm, S. W.: Viral
release of iron and its bioavailability to marine plankton, Limnol.
Oceanogr., 49, 1734–1741, 2004.
Prado-Fiedler, R.: Winter and summer distribution of dissolved oxygen, pH
and nutrients at the heads of fjords in Chilean Patagonia with possible
phosphorus limitation, Rev. Biol. Mar. Oceanogr., 44, 783–789, 2009.
Prospero, J. M., Bullard, J. E., and Hodgkins, R.: High-Latitude Dust Over
the North Atlantic: Inputs from Icelandic Proglacial Dust Storms, Science,
80, 1078–1082, https://doi.org/10.1126/science.1217447, 2012.
Raiswell, R. and Canfield, D. E.: The Iron biogeochemical Cycle Past and
Present, Geochem. Perspect., 1, 1–220, https://doi.org/10.7185/geochempersp.1.1,
2012.
Raiswell, R., Tranter, M., Benning, L. G., Siegert, M., De'ath, R.,
Huybrechts, P., and Payne, T.: Contributions from glacially derived sediment
to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to
the oceans, Geochim. Cosmochim. Acta, 70, 2765–2780,
https://doi.org/10.1016/j.gca.2005.12.027, 2006.
Raiswell, R., Benning, L. G., Tranter, M., and Tulaczyk, S.: Bioavailable
iron in the Southern Ocean: the significance of the iceberg conveyor belt,
Geochem. Trans., 9, 7, https://doi.org/10.1186/1467-4866-9-7, 2008.
Redfield, A. C.: On the proportions of organic derivations in sea water and
their relation to the composition of plankton, in: James Johnstone Memorial
Volume, edited by: R. J. Daniel, 177–192, University Press of Liverpool,
Liverpool, 1934.
Reisdorph, S. C. and Mathis, J. T.: Assessing net community production in a glaciated Alaskan fjord, Biogeosciences, 12, 5185–5198, https://doi.org/10.5194/bg-12-5185-2015, 2015.
Ren, Z., Martyniuk, N., Oleksy, I. A., Swain, A., and Hotaling, S.:
Ecological Stoichiometry of the Mountain Cryosphere, Front. Ecol. Evol., 7,
360, https://doi.org/10.3389/fevo.2019.00360, 2019.
Renner, M., Arimitsu, M. L., Piatt, J. F., and Rochet, M.-J.: Structure of
marine predator and prey communities along environmental gradients in a
glaciated fjord, Can. J. Fish. Aquat. Sci., 69, 2029–2045,
https://doi.org/10.1139/f2012-117, 2012.
Ribeiro, S., Moros, M., Ellegaard, M., and Kuijpers, A.: Climate variability
in West Greenland during the past 1500 years: evidence from a
high-resolution marine palynological record from Disko Bay, Boreas, 41,
68–83, https://doi.org/10.1111/j.1502-3885.2011.00216.x, 2012.
Ribeiro, S., Sejr, M. K., Limoges, A., Heikkilä, M., Andersen, T. J.,
Tallberg, P., Weckström, K., Husum, K., Forwick, M., Dalsgaard, T.,
Massé, G., Seidenkrantz, M.-S., and Rysgaard, S.: Sea ice and primary
production proxies in surface sediments from a High Arctic Greenland fjord:
Spatial distribution and implications for palaeoenvironmental studies,
Ambio, 46, 106–118, https://doi.org/10.1007/s13280-016-0894-2, 2017.
Richlen, M. L., Zielinski, O., Holinde, L., Tillmann, U., Cembella, A., Lyu,
Y., and Anderson, D. M.: Distribution of Alexandrium fundyense (Dinophyceae)
cysts in Greenland and Iceland, with an emphasis on viability and growth in
the Arctic, Mar. Ecol. Prog. Ser., 547, 33–46, https://doi.org/10.3354/meps11660, 2016.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 80, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen,
J., and Gerringa, L. J. A.: Dissolved Fe in the Deep and Upper Arctic Ocean
With a Focus on Fe Limitation in the Nansen Basin, Front. Mar. Sci., 5, 88,
https://doi.org/10.3389/fmars.2018.00088, 2018.
Ryan-Keogh, T. J., Macey, A. I., Nielsdottir, M. C., Lucas, M. I.,
Steigenberger, S. S., Stinchcombe, M. C., Achterberg, E. P., Bibby, T. S.,
and Moore, C. M.: Spatial and temporal development of phytoplankton iron
stress in relation to bloom dynamics in the high-latitude North Atlantic
Ocean, Limnol. Oceanogr., 58, 533–545, https://doi.org/10.4319/lo.2013.58.2.0533,
2013.
Rysgaard, S. and Glud, R. N.: Carbon cycling and climate change: Predictions for a high-Arctic marine ecosystem (Young Sound, NE Greenland). Meddelelser om Groenland, Bioscience, 58, 206–213, 2007.
Rysgaard, S., Nielsen, T., and Hansen, B.: Seasonal variation in nutrients,
pelagic primary production and grazing in a high-Arctic coastal marine
ecosystem, Young Sound, Northeast Greenland, Mar. Ecol. Prog. Ser., 179,
13–25, https://doi.org/10.3354/meps179013, 1999.
Rysgaard, S., Vang, T., Stjernholm, M., Rasmussen, B., Windelin, A., and
Kiilsholm, S.: Physical conditions, carbon transport, and climate change
impacts in a northeast Greenland fjord, Arct. Antarct. Alp. Res., 35,
301–312, https://doi.org/10.1657/1523-0430(2003)035[0301:pcctac]2.0.co;2, 2003.
Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sørensen, L. L., Lennert,
K., Søgaard, D. H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and
Bendtsen, J.: High air–sea CO2 uptake rates in nearshore and shelf areas of
Southern Greenland: Temporal and spatial variability, Mar. Chem., 128–129,
26–33, https://doi.org/10.1016/j.marchem.2011.11.002, 2012.
Ryu, J.-S. and Jacobson, A. D.: CO2 evasion from the Greenland Ice Sheet: A
new carbon-climate feedback, Chem. Geol., 320–321, 80–95,
https://doi.org/10.1016/j.chemgeo.2012.05.024, 2012.
Schaffer, J., Kanzow, T., von Appen, W., von Albedyll, L., Arndt, J. E., and Roberts, D. H.: Bathymetry constrains ocean
heat supply to Greenland's largest glacier tongue, Nat. Geosci., 13,
227–231, https://doi.org/10.1038/s41561-019-0529-x, 2020.
Schild, K. M., Hawley, R. L., and Morriss, B. F.: Subglacial hydrology at
Rink Isbræ, West Greenland inferred from sediment plume appearance, Ann.
Glaciol., 57, 118–127, https://doi.org/10.1017/aog.2016.1, 2016.
Schlosser, C., Schmidt, K., Aquilina, A., Homoky, W. B., Castrillejo, M., Mills, R. A., Patey, M. D., Fielding, S., Atkinson, A., and Achterberg, E. P.: Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean, Biogeosciences, 15, 4973–4993, https://doi.org/10.5194/bg-15-4973-2018, 2018.
Schmidt, K., Atkinson, A., Steigenberger, S., Fielding, S., Lindsay, M. C.
M., Pond, D. W., Tarling, G. A., Klevjer, T. A., Allen, C. S., Nicol, S., and
Achterberg, E. P.: Seabed foraging by Antarctic krill: Implications for
stock assessment, bentho-pelagic coupling, and the vertical transfer of
iron, Limnol. Oceanogr., 56, 1411–1428, https://doi.org/10.4319/lo.2011.56.4.1411,
2011.
Schroth, A. W., Crusius, J., Chever, F., Bostick, B. C., and Rouxel, O. J.:
Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of
Alaska and effects of deglaciation, Geophys. Res. Lett., 38, L16605,
https://doi.org/10.1029/2011gl048367, 2011.
Schroth, A. W., Crusius, J., Campbell, R. W., and Hoyer, I.: Estuarine
removal of glacial iron and implications for iron fluxes to the ocean,
Geophys. Res. Lett., 41, 3951–3958, https://doi.org/10.1002/2014GL060199, 2014.
Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C.,
Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O., and
DiTullio, G. R.: Early season depletion of dissolved iron in the Ross Sea
polynya: Implications for iron dynamics on the Antarctic continental shelf,
J. Geophys. Res., 116, C12019, https://doi.org/10.1029/2010JC006553, 2011.
Seifert, M., Hoppema, M., Burau, C., Elmer, C., Friedrichs, A., Geuer, J.
K., John, U., Kanzow, T., Koch, B. P., Konrad, C., van der Jagt, H.,
Zielinski, O., and Iversen, M. H.: Influence of Glacial Meltwater on Summer
Biogeochemical Cycles in Scoresby Sund, East Greenland, Front. Mar. Sci., 6,
412, https://doi.org/10.3389/fmars.2019.00412, 2019.
Sejr, M. K., Krause-Jensen, D., Rysgaard, S., Sørensen, L. L.,
Christensen, P. B., and Glud, R. N.: Air–sea flux of CO2 in arctic coastal
waters influenced by glacial melt water and sea ice, Tellus B, 63,
815–822, https://doi.org/10.1111/j.1600-0889.2011.00540.x, 2011.
Sejr, M. K., Stedmon, C. A., Bendtsen, J., Abermann, J., Juul-Pedersen, T.,
Mortensen, J., and Rysgaard, S.: Evidence of local and regional freshening of
Northeast Greenland coastal waters, Sci. Rep., 7, 13183,
https://doi.org/10.1038/s41598-017-10610-9, 2017.
Shaffer, G. and Lambert, F.: In and out of glacial extremes by way of
dust−climate feedbacks, P. Natl. Acad. Sci. USA, 115, 2026–2031,
https://doi.org/10.1073/pnas.1708174115, 2018.
Sholkovitz, E. R., Boyle, E. A., and Price, N. B.: The removal of dissolved
humic acids and iron during estuarine mixing, Earth Planet. Sci. Lett., 40,
130–136, https://doi.org/10.1016/0012-821X(78)90082-1, 1978.
Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W.,
and Nienow, P. W.: Localized Plumes Drive Front-Wide Ocean Melting of A
Greenlandic Tidewater Glacier, Geophys. Res. Lett., 45, 12312–350358,
https://doi.org/10.1029/2018GL080763, 2018.
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High
rates of organic carbon burial in fjord sediments globally, Nat. Geosci., 8,
450–453, https://doi.org/10.1038/ngeo2421, 2015.
Smoła, Z. T., Tatarek, A., Wiktor, J. M., Wiktor, J. M. W., Kubiszyn, A.,
and Węsławski, J. M.: Primary producers and production in Hornsund and
Kongsfjorden – comparison of two fjord systems, Polish Polar Res., 38,
351–373, https://doi.org/10.1515/popore-2017-0013, 2017.
Sommaruga, R.: When glaciers and ice sheets melt: consequences for
planktonic organisms, J. Plankton Res., 37, 509–518,
https://doi.org/10.1093/plankt/fbv027, 2015.
Spall, M. A., Jackson, R. H., and Straneo, F.: Katabatic Wind-Driven Exchange
in Fjords, J. Geophys. Res.-Ocean., 122, 8246–8262,
https://doi.org/10.1002/2017JC013026, 2017.
Statham, P. J., Skidmore, M., and Tranter, M.: Inputs of glacially derived
dissolved and colloidal iron to the coastal ocean and implications for
primary productivity, Global Biogeochem. Cy., 22, Gb3013,
https://doi.org/10.1029/2007gb003106, 2008.
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L., and Morlighem, M.: Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations, The Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, 2016.
Stevenson, E. I., Fantle, M. S., Das, S. B., Williams, H. M., and Aciego, S.
M.: The iron isotopic composition of subglacial streams draining the
Greenland ice sheet, Geochim. Cosmochim. Acta, 213, 237–254,
https://doi.org/10.1016/j.gca.2017.06.002, 2017.
Stibal, M., Anesio, A. M., Blues, C. J. D., and Tranter, M.: Phosphatase activity and organic phosphorus turnover on a high Arctic glacier, Biogeosciences, 6, 913–922, https://doi.org/10.5194/bg-6-913-2009, 2009.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and
Dinniman, M. S.: Pathways and supply of dissolved iron in the Amundsen Sea
(Antarctica), J. Geophys. Res.-Ocean., 122, 7135–7162, https://doi.org/10.1002/2017JC013162, 2017.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Oliver, H., Dinniman, M. S.,
and Stammerjohn, S. E.: Modeling the Seasonal Cycle of Iron and Carbon
Fluxes in the Amundsen Sea Polynya, Antarctica, J. Geophys. Res.-Ocean.,
124, 1544–1565, https://doi.org/10.1029/2018JC014773, 2019.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate change 2013: The physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 1535, 2013.
Stoecker, D. K. and Lavrentyev, P. J.: Mixotrophic Plankton in the Polar
Seas: A Pan-Arctic Review, Front. Mar. Sci., 5, 292,
https://doi.org/10.3389/fmars.2018.00292, 2018.
Stoecker, D. K., Hansen, P. J., Caron, D. A., and Mitra, A.: Mixotrophy in
the Marine Plankton, Annu. Rev. Mar. Sci., 9, 311–335,
https://doi.org/10.1146/annurev-marine-010816-060617, 2017.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and
Their Role in Climate, Annu. Rev. Mar. Sci., 7, 89–112,
https://doi.org/10.1146/annurev-marine-010213-135133, 2015.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation
of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/ngeo764, 2010.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C.,
Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial runoff
on the circulation near Helheim Glacier, Nat. Geosci., 4, 322–327, 2011.
Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G. S.,
Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean
waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012.
Straneo, F., Sutherland, D. A., Stearns, L., Catania, G., Heimbach, P.,
Moon, T., Cape, M. R., Laidre, K. L., Barber, D., Rysgaard, S., Mottram, R.,
Olsen, S., Hopwood, M. J., and Meire, L.: The Case for a Sustained Greenland
Ice Sheet-Ocean Observing System (GrIOOS), Front. Mar. Sci., 6, 138,
https://doi.org/10.3389/fmars.2019.00138, 2019.
Štrojsová, A., Vrba, J., Nedoma, J., and Šimek, K.: Extracellular
phosphatase activity of freshwater phytoplankton exposed to different in
situ phosphorus concentrations, Mar. Freshw. Res., 56, 417–424,
https://doi.org/10.1071/MF04283, 2005.
Strzepek, R. F., Maldonado, M. T., Higgins, J. L., Hall, J., Safi, K.,
Wilhelm, S. W., and Boyd, P. W.: Spinning the “Ferrous Wheel”: The
importance of the microbial community in an iron budget during the FeCycle
experiment, Global Biogeochem. Cy., 19, GB4S26, https://doi.org/10.1029/2005GB002490, 2005.
Sundfjord, A., Albretsen, J., Kasajima, Y., Skogseth, R., Kohler, J., Nuth,
C., Skarðhamar, J., Cottier, F., Nilsen, F., Asplin, L., Gerland, S., and
Torsvik, T.: Effects of glacier runoff and wind on surface layer dynamics
and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study,
Estuar. Coast. Shelf Sci., 187, 260–272, https://doi.org/10.1016/j.ecss.2017.01.015,
2017.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane
Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J. Geophys. Res.-Ocean., 114, C05020, https://doi.org/10.1029/2008JC004808, 2009.
Sutherland, D. A., Roth, G. E., Hamilton, G. S., Mernild, S. H., Stearns, L.
A., and Straneo, F.: Quantifying flow regimes in a Greenland glacial fjord
using iceberg drifters, Geophys. Res. Lett., 41, 8411–8420,
https://doi.org/10.1002/2014GL062256, 2014.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B.,
Tverberg, V., Gerland, S., Ørbøk, J. B., Bischof, K., Papucci, C.,
Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., and
Dallmann, W.: The physical environment of Kongsfjorden–Krossfjorden, an
Arctic fjord system in Svalbard, Polar Res., 21, 133–166,
https://doi.org/10.1111/j.1751-8369.2002.tb00072.x, 2002.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S.,
Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock,
C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean
biogeochemistry models simulate dissolved iron distributions?, Global
Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289, 2016.
Taylor, R. L., Semeniuk, D. M., Payne, C. D., Zhou, J., Tremblay, J.-É.,
Cullen, J. T., and Maldonado, M. T.: Colimitation by light, nitrate, and iron
in the Beaufort Sea in late summer, J. Geophys. Res.-Ocean., 118,
3260–3277, https://doi.org/10.1002/jgrc.20244, 2013.
Thingstad, T. F., Bellerby, R. G. J., Bratbak, G., Børsheim, K. Y., Egge,
J. K., Heldal, M., Larsen, A., Neill, C., Nejstgaard, J., Norland, S.,
Sandaa, R.-A., Skjoldal, E. F., Tanaka, T., Thyrhaug, R., and Töpper, B.:
Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem,
Nature, 455, 387–390, https://doi.org/10.1038/nature07235, 2008.
Thuroczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills, M.
M., Van Dijken, G. L., De Baar, H. J. W., and Arrigo, K. R.: Key role of
organic complexation of iron in sustaining phytoplankton blooms in the Pine
Island and Amundsen Polynyas (Southern Ocean), Deep. Res. Part Ii, 71–76, 49–60, https://doi.org/10.1016/j.dsr2.2012.03.009, 2012.
Tonnard, M., Planquette, H., Bowie, A. R., van der Merwe, P., Gallinari, M., Desprez de Gésincourt, F., Germain, Y., Gourain, A., Benetti, M., Reverdin, G., Tréguer, P., Boutorh, J., Cheize, M., Lacan, F., Menzel Barraqueta, J.-L., Pereira-Contreira, L., Shelley, R., Lherminier, P., and Sarthou, G.: Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01), Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, 2020.
Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F., and West, A. J.:
Glaciers, sulfide oxidation, and the carbon cycle, P. Natl. Acad. Sci. USA,
114, 8716–8721, https://doi.org/10.1073/pnas.1702953114, 2017.
Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D.,
Skarðhamar, J., Lindbäck, K., and Everett, A.: Impact of tidewater
glacier retreat on the fjord system: Modeling present and future circulation
in Kongsfjorden, Svalbard, Estuar. Coast. Shelf Sci., 220, 152–165,
https://doi.org/10.1016/j.ecss.2019.02.005, 2019.
Tranter, M., Huybrechts, P., Munhoven, G., Sharp, M. J., Brown, G. H.,
Jones, I.W., Hodson, A. J., Hodgkins, R., and Wadham, J. L.: Direct effect of
ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes
during the last glacial cycle: minimal impact on atmospheric CO2
concentrations, Chem. Geol., 190, 33–44, https://doi.org/10.1016/S0009-2541(02)00109-2, 2002.
Tremblay, J.-É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 193, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009, 2015.
Turk, D., Bedard, J. M., Burt, W. J., Vagle, S., Thomas, H., Azetsu-Scott,
K., McGillis, W. R., Iverson, S. J., and Wallace, D. W. R.: Inorganic carbon
in a high latitude estuary-fjord system in Canada's eastern Arctic, Estuar.
Coast. Shelf Sci., 178, 137–147, https://doi.org/10.1016/j.ecss.2016.06.006, 2016.
Twining, B. S. and Baines, S. B.: The Trace Metal Composition of Marine
Phytoplankton, Ann. Rev. Mar. Sci., 5, 191–215,
https://doi.org/10.1146/annurev-marine-121211-172322, 2013.
Uehlinger, U., Robinson, C., Hieber, M., and Zah, R.: The physico-chemical
habitat template for periphyton in alpine glacial streams under a changing
climate, Hydrobiologia, 657, 107–121, 10.1007/s10750-009-9963-x, 2010.
Uitz, J., Claustre, H., Griffiths, F. B., Ras, J., Garcia, N., and Sandroni,
V.: A phytoplankton class-specific primary production model applied to the
Kerguelen Islands region (Southern Ocean), Deep Sea Res. Part I, 56, 541–560, https://doi.org/10.1016/j.dsr.2008.11.006, 2009.
van de Poll, W. H., Kulk, G., Rozema, P. D., Brussaard, C. P. D., Visser, R.
J. W., and Buma, A. G. J.: Contrasting glacial meltwater effects on
post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden,
Spitsbergen, Elem. Sci. Anth., 6, 50, https://doi.org/10.1525/elementa.307, 2018.
van der Merwe, P. C., Wuttig, K., Holmes, T., Trull, T., Chase, Z., Townsend,
A., Goemann, K., and Bowie, A. R.: High lability Fe particles sourced from
glacial erosion can meet previously unaccounted biological demand: Heard
Island, Southern Ocean, Front. Mar. Sci., 6, 332, https://doi.org/10.3389/fmars.2019.00332, 2019.
Vandersea, M. W., Kibler, S. R., Tester, P. A., Holderied, K., Hondolero, D.
E., Powell, K., Baird, S., Doroff, A., Dugan, D., and Litaker, R.
W.: Environmental factors influencing the distribution and abundance of
Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska, Harmful
Algae, 77, 81–92, https://doi.org/10.1016/j.hal.2018.06.008, 2018.
Vergara-Jara, M. J., DeGrandpre, M. D., Torres, R., Beatty, C. M., Cuevas, L. A., Alarcón, E., and Iriarte, J. L.: Seasonal changes in carbonate saturation state and air‐sea CO2 fluxes during an annual cycle in a stratified‐temperate fjord (Reloncaví Fjord, Chilean Patagonia), J. Geophys. Res.-Biogeosci., 124, 2851–2865, https://doi.org/10.1029/2019JG005028, 2019.
Vraspir, J. M. and Butler, A.: Chemistry of Marine Ligands and Siderophores,
Annu. Rev. Mar. Sci., 1, 43–63, https://doi.org/10.1146/annurev.marine.010908.163712,
2009.
Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons,
W. B., Sharp, M., Wynn, P., and Jackson, M.: Biogeochemical weathering under
ice: Size matters, Global Biogeochem. Cy., 24, GB3025, https://doi.org/10.1029/2009GB003688,
2010.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567, https://doi.org/10.1038/s41467-019-11394-4,
2019.
Ward, B. A. and Follows, M. J.: Marine mixotrophy increases trophic transfer
efficiency, mean organism size, and vertical carbon flux, P. Natl. Acad.
Sci. USA, 113, 2958–2963, https://doi.org/10.1073/pnas.1517118113, 2016.
Wçslawski W, J. M. and Legezytńska, J.: Glaciers caused zooplankton
mortality?, J. Plankton Res., 20, 1233–1240,
https://doi.org/10.1093/plankt/20.7.1233, 1998.
Wehrmann, L. M., Formolo, M. J., Owens, J. D., Raiswell, R., Ferdelman, T.
G., Riedinger, N., and Lyons, T. W.: Iron and manganese speciation and
cycling in glacially influenced high-latitude fjord sediments (West
Spitsbergen, Svalbard): Evidence for a benthic recycling-transport
mechanism, Geochim. Cosmochim. Acta, 141, 628–655, https://doi.org/10.1016/j.gca.2014.06.007, 2014.
Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C.
G., Kudela, R. M., Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M., and
Cochlan, W. P.: Harmful algal blooms and climate change: Learning from the
past and present to forecast the future, Harmful Algae, 49, 68–93,
https://doi.org/10.1016/j.hal.2015.07.009, 2015.
White, J. R. and Dagg, M. J.: Effects of suspended sediments on egg
production of the calanoid copepod Acartia tonsa, Mar. Biol., 102,
315–319, https://doi.org/10.1007/BF00428483, 1989.
Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A., and Gabrielsen, T. M.:
Seasonality of vertical flux and sinking particle characteristics in an
ice-free high arctic fjord—Different from subarctic fjords?, J. Mar.
Syst., 154, 192–205, https://doi.org/10.1016/j.jmarsys.2015.10.003, 2016.
Windom, H., Byrd, J., Smith, R., Hungspreugs, M., Dharmvanij, S.,
Thumtrakul, W., and Yeats, P.: Trace metal-nutrient relationships in
estuaries, Mar. Chem., 32, 177–194, https://doi.org/10.1016/0304-4203(91)90037-W,
1991.
Włodarska-Kowalczuk, M. and Pearson, T. H.: Soft-bottom macrobenthic
faunal associations and factors affecting species distributions in an Arctic
glacial fjord (Kongsfjord, Spitsbergen), Polar Biol., 27, 155–167,
https://doi.org/10.1007/s00300-003-0568-y, 2004.
Włodarska-Kowalczuk, M. and Weslawski, J. M.: Impact of climate warming on
Arctic benthic biodiversity: a case study of two Arctic glacial bays,
Clim. Res., 18, 127–132, 2001.
Włodarska-Kowalczuk, M., Pearson, T. H., and Kendall, M. A.: Benthic
response to chronic natural physical disturbance by glacial sedimentation in
an Arctic fjord, Mar. Ecol. Progr. Ser., 303, 31–41, https://doi.org/10.3354/meps303031, 2005.
Włodarska-Kowalczuk, M., Mazurkiewicz, M., Górska, B., Michel, L. N.,
Jankowska, E., and Zaborska, A.: Organic carbon origin, benthic faunal
consumption and burial in sediments of northern Atlantic and Arctic fjords
(60–81∘ N), J. Geophys. Res.-Biogeosci., 124, 3737–3751,
https://doi.org/10.1029/2019JG005140, 2019
Wojtasiewicz, B., Trull, T. W., Clementson, L., Davies, D. M., Patten, N.
L., Schallenberg, C., and Hardman-Mountford, N. J.: Factors Controlling the
Lack of Phytoplankton Biomass in Naturally Iron Fertilized Waters Near Heard
and McDonald Islands in the Southern Ocean, Front. Mar. Sci., 6, 531,
https://doi.org/10.3389/fmars.2019.00531, 2019.
Xie, H., Bélanger, S., Song, G., Benner, R., Taalba, A., Blais, M., Tremblay, J.-É., and Babin, M.: Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications, Biogeosciences, 9, 3047–3061, https://doi.org/10.5194/bg-9-3047-2012, 2012.
Xu, Y., Rignot, E., Menemenlis, D., and Koppes, M.: Numerical experiments on
subaqueous melting of greenland tidewater glaciers in response to ocean
warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234,
https://doi.org/10.3189/2012AoG60A139, 2012.
Yde, J. C., Knudsen, N. T., and Nielsen, O. B.: Glacier hydrochemistry,
solute provenance, and chemical denudation at a surge-type glacier in
Kuannersuit Kuussuat, Disko Island, West Greenland, J. Hydrol., 300,
172–187, https://doi.org/10.1016/j.jhydrol.2004.06.008, 2005.
Yde, J. C., Knudsen, N. T., Hasholt, B., and Mikkelsen, A. B.: Meltwater
chemistry and solute export from a Greenland Ice Sheet catchment, Watson
River, West Greenland, J. Hydrol., 519, 2165–2179,
https://doi.org/10.1016/j.jhydrol.2014.10.018, 2014.
Zajączkowski, M. and Włodarska-Kowalczuk, M.: Dynamic sedimentary
environments of an Arctic glacier-fed river estuary (Adventfjorden,
Svalbard). I. Flux, deposition, and sediment dynamics, Estuar. Coast. Shelf
Sci., 74, 285–296, https://doi.org/10.1016/j.ecss.2007.04.015, 2007.
Zhang, R., John, S. G., Zhang, J., Ren, J., Wu, Y., Zhu, Z., Liu, S., Zhu,
X., Marsay, C. M., and Wenger, F.: Transport and reaction of iron and iron
stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From
rivers to estuary to ocean, Earth Planet. Sci. Lett., 424, 201–211,
https://doi.org/10.1016/j.epsl.2015.05.031, 2015.
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Here we compare and contrast results from five well-studied Arctic field sites in order to...