Bellot, H., Naiim-Bouvet, F., Ito, Y., Deschatres, M., and Amory, C.:
Characterization of sastrugi fields with TLS (Terrestrial laser scan) and
simple digital photos, in: EGU General Assembly, 27 April–2 May 2014, Vienna, Austria, 12145,
2014. a
Brown, D.: Tracker: Video analysis and modeling tool, available at:
https://physlets.org/tracker/, last access: 14 February 2018. a
Clifton, A., R uedi, J.-D., and Lehning, M.: Snow saltation threshold
measurements in a drifting-snow wind tunnel, J. Glaciol., 52,
585–596,
https://doi.org/10.3189/172756506781828430, 2006.
a
Colbeck, S. C.: The layered character of snow, Rev. Geophys., 29,
81–96, 1991. a
Corbett, J. and Su, W.: Accounting for the effects of sastrugi in the CERES
clear-sky Antarctic shortwave angular distribution models, Atmos. Meas.
Tech., 8, 3163–3175,
https://doi.org/10.5194/amt-8-3163-2015, 2015.
a,
b
Cornish, V.: On snow-waves and snow-drifts in Canada, with notes on the
“snow-mushrooms” of the Selkirk Mountains, Geogr. J., 85,
342–365,
https://doi.org/10.2307/1774538, 1902.
a,
b,
c
Doumani, G. A.: Surface structures in snow, in: International Conference on
Low Temperature Science: Physics of Snow and Ice, 1119–1136, Hokkaido
University, Hokkaido, Japan, 1967.
a,
b,
c,
d,
e
Elbelrhiti, H., Claudin, P., and Andreotti, B.: Field evidence for
surface-wave-induced instability of sand dunes, Nature, 437, 720–723,
https://doi.org/10.1038/nature04058, 2005.
a,
b
Filhol, S. and Sturm, M.: Snow bedforms: A review, new data, and a formation
model, J. Geophys. Res.-Earth, 120, 1645–1669,
https://doi.org/10.1002/2015JF003529, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Filhol, S., Pirk, N., Schuler, T., and Burkhart, J. F.: The evolution of a
snow dune field, in: American Geophysical Union, Fall Meeting, 11–15 December 2017,
New Orleans, LA, USA, C51E–01, 2017.
a,
b
Harder, S., Warren, G., and Charlson, R. J.: Sulfate in air and snow at the
South Pole: Implications for transport and deposition at sites with low snow
accumulation, J. Geophys. Res., 105, 22825–22832,
https://doi.org/10.1029/2000JD900351, 2000.
a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
90–95, 2007. a
Inoue, J.: Surface drag over the snow surface of the Antarctic Plateau 1.
Factors controlling surface drag over the katabatic wind region, J.
Geophys. Res., 94, 2207–2217,
https://doi.org/10.1017/CBO9781107415324.004,
1989a.
a
Jackson, B. S. and Carroll, J. J.: Aerodynamic roughness as a function of
wind
direction over asymmetric surface elements, Bound.-Lay. Meteorol., 14,
323–330, 1978. a
Kobayashi, S.: Studies on interaction between wind and dry snow surface,
Contributions from the Institute of Low Temperature Science, A29, 1–64,
1980.
a,
b,
c,
d,
e
Kochanski, K.: The movement of snow bedforms in the Colorado Front Range,
https://doi.org/10.5446/38612, available at:
https://av.tib.eu/media/38612 (last
access: 13 April 2019), 2018a.
a,
b
Kochanski, K.: Time-lapses of snow bedforms in the Colorado Front Range,
available at:
http://www.kochanski.org/kelly/snow-bedforms-in-the-colorado-front-range/
(last access: 13 April 2019), 2018c. a
Kochanski, K., Tucker, G., and Anderson, R. S.: Statistical classification
of self-organized snow surfaces, Geophys. Res. Lett., 45, 6532–6541,
https://doi.org/10.1029/2018GL077616, 2018.
a,
b,
c,
d,
e,
f
Kosugi, K., Nishimura, K., and Maeno, N.: Snow ripples and their
contribution
to the mass transport in drifting snow, Bound.-Lay. Meteorol., 59,
59–66,
https://doi.org/10.1007/BF00120686, 1992.
a
Langmuir, I. and Blodgett, K.: A mathematical investigation of water droplet
trajectories, U.S. Army Air Force Technical Report 5418, Army Air Forces
Headquarters, Air Technical Service Command, Washington, D.C., USA, 1946. a
Leonard, K. C.: Antarctic Snow Drift Processes, PhD thesis, Columbia
University, ProQuest LLC, Ann Arbor, USA, 2009.
a,
b
Liston, G. E., Polashenski, C. M., Rosel, A., Itkin, P., King, J.,
Merkouriadi, I., and Haapala, J.: A Distributed Snow-Evolution Model for
Sea-Ice Applications (SnowModel), J. Geophys. Res.-Oceans, 123, 3786–3810,
https://doi.org/10.1002/2017JC013706, 2018.
a
Losleben, M.: Precipitation data for Saddle chart recorder from 1981-7-31 to
ongoing, daily, available at:
http://niwot.colorado.edu (last access:
13 April 2019), 2018a.
a,
b
Losleben, M.: Climate data for Saddle data loggers (CR23X and CR1000) from
2000-6-24 to ongoing, daily, available at:
http://niwot.colorado.edu
(last access: 13 April 2019), 2018b.
a,
b
Oliphant, T. E.: Guide to NumPy, CreateSpace Independent Publishing
Platform, Trelgol Publishing, USA, 2007. a
Petrich, C., Eicken, H., Polashenski, C. M., Sturm, M., Harbeck, J. P.,
Perovich, D. K., and Finnegan, D. C.: Snow dunes: a controlling factor of
melt pond distribution on Arctic sea ice, J. Geophys. Res.-Oceans, 117,
C09029,
https://doi.org/10.1029/2012JC008192, 2012.
a,
b,
c
Vermeesch, P. and Drake, N.: Remotely sensed dune celerity and sand flux
measurements of the world's fastest barchans, Geophys. Res.
Lett., 35, L24404,
https://doi.org/10.1029/2008GL035921, 2017.
a,
b
Warren, S. G., Brandt, R. E., and O'Rawe Hinton, P.: Effect of surface
roughness on bidirectional reflectance of Antarctic snow, J.
Geophys. Res., 103, 25789,
https://doi.org/10.1029/98JE01898, 1998.
a