Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-401-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-401-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland
Pascal Bohleber
CORRESPONDING AUTHOR
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Helene Hoffmann
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Johanna Kerch
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
independent researcher
formerly at: Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Andrea Fischer
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria
Related authors
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1723, https://doi.org/10.5194/egusphere-2024-1723, 2024
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. This work finds that one dimensional signals can be significantly effected by this association, meaning experiments collecting data at high resolution must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1723, https://doi.org/10.5194/egusphere-2024-1723, 2024
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. This work finds that one dimensional signals can be significantly effected by this association, meaning experiments collecting data at high resolution must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Helene M. Hoffmann, Mackenzie M. Grieman, Amy C. F. King, Jenna A. Epifanio, Kaden Martin, Diana Vladimirova, Helena V. Pryer, Emily Doyle, Axel Schmidt, Jack D. Humby, Isobel F. Rowell, Christoph Nehrbass-Ahles, Elizabeth R. Thomas, Robert Mulvaney, and Eric W. Wolff
Clim. Past, 18, 1831–1847, https://doi.org/10.5194/cp-18-1831-2022, https://doi.org/10.5194/cp-18-1831-2022, 2022
Short summary
Short summary
The WACSWAIN project (WArm Climate Stability of the West Antarctic ice sheet in the last INterglacial) investigates the fate of the West Antarctic Ice Sheet during the last warm period on Earth (115 000–130 000 years before present). Within this framework an ice core was recently drilled at Skytrain Ice Rise. In this study we present a stratigraphic chronology of that ice core based on absolute age markers and annual layer counting for the last 2000 years.
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019, https://doi.org/10.5194/essd-11-705-2019, 2019
Johanna Kerch, Anja Diez, Ilka Weikusat, and Olaf Eisen
The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, https://doi.org/10.5194/tc-12-1715-2018, 2018
Short summary
Short summary
We investigate the effect of crystal anisotropy on seismic velocities in glacier ice by calculating seismic phase velocities using the exact c axis angles to describe the crystal orientations in ice-core samples for an alpine and a polar ice core. Our results provide uncertainty estimates for earlier established approximative calculations. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane.
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-37, https://doi.org/10.5194/tc-2018-37, 2018
Revised manuscript has not been submitted
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Andrea Fischer, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 10, 2941–2952, https://doi.org/10.5194/tc-10-2941-2016, https://doi.org/10.5194/tc-10-2941-2016, 2016
Short summary
Short summary
In the Alps, glacier cover, snow farming and technical snow production were introduced as adaptation measures to climate change one decade ago. Comparing elevation changes in areas with and without mass balance management in five ski resorts showed that locally up to 20 m of ice thickness was preserved compared to non-maintained areas. The method can be applied to maintainance of skiing infrastructure but has also some potential for melt management at high and dry glaciers.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
A. Fischer, B. Seiser, M. Stocker Waldhuber, C. Mitterer, and J. Abermann
The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, https://doi.org/10.5194/tc-9-753-2015, 2015
Short summary
Short summary
A time series of four Austrian glacier inventories (GIs) from the LIA maximum state up to the year 2006 show a decrease of glacier area to 44% of the LIA area. The annual relative area losses are 0.3%/year for the period GI LIA to GI 1 (1969), with one period with major glacier advances in the 1920s. From GI 1 to GI 2 (1969-1998, one advance period of variable length in the 1980s) glacier area decreased by 0.6%/year, and from GI 2 to GI 3 (10 years, no advance period) by 1.2%/year.
Cited articles
Abermann, J., Kuhn, M., and Fischer, A.: Climatic controls of glacier
distribution and glacier changes in Austria, Ann. Glaciol., 52,
83–90, 2011. a
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J.
Glaciol., 38, 245–256, 1992. a
Baroni, C. and Orombelli, G.: The alpine “Iceman” and Holocene climatic
change, Quaternary Res., 46, 78–83, 1996. a
Bohleber, P., Hoffmann, H., Kerch, J., Sold, L., and Fischer, A.: Stable
water isotope record from block profiles in the ice tunnel at Chli Titlis
glacier, Switzerland, Pangaea, https://doi.org/10.1594/PANGAEA.885082, 2018. a
Bonani, G., Ivy, S. D., Hajdas, I., Niklaus, T. R., and Suter, M.: AMS 14C
age
determinations of tissue, bone and grass samples from the Ötztal Ice Man,
Radiocarbon, 36, 247–250, 1994. a
Duval, P., Ashby, M., and Anderman, I.: Rate-controlling processes in the
creep
of polycrystalline ice, J. Phys. Chem., 87, 4066–4074,
1983. a
Eichler, J.: C-Axis Analysis of the NEEM Ice Core – An Approach based on
Digital
Image Processing, PhD thesis, Fachbereich Physik, Freie Universität
Berlin, hdl:10013/epic.41621, 2013. a
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part I: Highlights from ice core research, J. Struct. Geol., 61,
2–20, 2014. a
Fischer, A., Markl, G., Schneider, H., Abermann, J., and Kuhn, M.: Glacier
mass
balances and elevation zones of Kesselwandferner, Ötztal Alps, Austria,
1952/1953 to 2012/2013, https://doi.org/10.1594/PANGAEA.818757,
2014. a
Fischer, A., Helfricht, K., and Stocker-Waldhuber, M.: Local reduction of
decadal glacier thickness loss through mass balance management in ski
resorts, The Cryosphere, 10, 2941–2952,
https://doi.org/10.5194/tc-10-2941-2016, 2016. a
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of
all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540,
https://doi.org/10.5194/tc-9-525-2015, 2015. a
Gilbert, A. and Vincent, C.: Atmospheric temperature changes over the 20th
century at very high elevations in the European Alps from englacial
temperatures, Geophys. Res. Lett., 40, 2102–2108, 2013. a
Gow, A. J. and Williamson, T.: Rheological implications of the internal
structure and crystal fabrics of the West Antarctic ice sheet as revealed by
deep core drilling at Byrd Station, Geol. Soc. Am. Bull.,
87, 1665–1677, 1976. a
Grosjean, M., Suter, P. J., Trachsel, M., and Wanner, H.: Ice-borne
prehistoric
finds in the Swiss Alps reflect Holocene glacier fluctuations, J.
Quaternary Sci., 22, 203–207, 2007. a
Haeberli, W.: Eistemperaturen in den Alpen, Zeitschrift für
Gletscherkunde und Glazialgeologie, 11, 203–220, 1976. a
Haeberli, W. and Alean, J.: Temperature and accumulation of high altitude
firn in the Alps, Ann. Glaciol., 6, 161–163, 1985. a
Hoelzle, M., Darms, G., Lüthi, M. P., and Suter, S.: Evidence of
accelerated englacial warming in the Monte Rosa area, Switzerland/Italy, The
Cryosphere, 5, 231–243, https://doi.org/10.5194/tc-5-231-2011, 2011. a, b
Hoffmann, H., Preunkert, S., Legrand, M., Leinfelder, D., Bohleber, P.,
Friedrich, R., and Wagenbach, D.: A New Sample Preparation System for
Micro-14C Dating of Glacier Ice with a First Application to a High Alpine Ice
Core from Colle Gnifetti (Switzerland), Radiocarbon, 1–17,
https://doi.org/10.1017/RDC.2017.99, 2017. a, b, c
Hoffmann, H. M.: Micro radiocarbon dating of the particulate organic carbon
fraction in Alpine glacier ice: method refinement, critical evaluation and
dating applications, PhD thesis, Heidelberg University, 2016. a
Hormes, A., Müller, B. U., and Schlüchter, C.: The Alps with little
ice: evidence for eight Holocene phases of reduced glacier extent in the
Central Swiss Alps, Holocene, 11, 255–265, 2001. a
Keck, L.: Climate significance of stable isotope records from Alpine ice
cores, PhD thesis, University of Heidelberg, 2001. a
Knight, P. G.: The basal ice layer of glaciers and ice sheets, Quaternary
Sci. Rev., 16, 975–993, 1997. a
Kutschera, W. and Müller, W.: “Isotope language” of the Alpine Iceman
investigated with AMS and MS, Nucl. Instrum. Meth. B, 204,
705–719, 2003. a
May, B.: Radiocarbon microanalysis on ice impurities for dating of Alpine
glaciers, PhD thesis, University of Heidelberg, 2009. a
Nicolussi, K. and Patzelt, G.: Untersuchungen zur holozanen
Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Mit 41
Abbildungen, Zeitschrift fur Gletscherkunde und Glazialgeologie, 36, 1–88,
2000. a
Obleitner, F. and Spötl, C.: The mass and energy balance of ice within
the Eisriesenwelt cave, Austria, The Cryosphere, 5, 245–257,
https://doi.org/10.5194/tc-5-245-2011, 2011. a
Ødegård, R. S., Nesje, A., Isaksen, K., Andreassen, L. M., Eiken, T.,
Schwikowski, M., and Uglietti, C.: Climate change threatens archaeologically
significant ice patches: insights into their age, internal structure, mass
balance and climate sensitivity, The Cryosphere, 11, 17–32,
https://doi.org/10.5194/tc-11-17-2017, 2017. a
Oeschger, H., Schotterer, U., Stauffer, B., Haeberli, W., and
Röthlisberger, H.: First results from Alpine core drilling projects,
Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 193–208, 1977. a
Olefs, M. and Lehning, M.: Textile protection of snow and ice: Measured and
simulated effects on the energy and mass balance, Cold Reg. Sci.
Technol., 62, 126–141, 2010. a
Schöner, W., Weyss, G., and Mursch-Radlgruber, E.: Linkage of cave-ice
changes to weather patterns inside and outside the cave Eisriesenwelt
(Tennengebirge, Austria), The Cryosphere, 5, 603–616,
https://doi.org/10.5194/tc-5-603-2011, 2011. a
Stuiver, M. and Polach, H.: Discussion: Reporting of 14C data,
Radiocarbon,
19, 355–363, 1977. a
swi: Swissimage, available at:
https://shop.swisstopo.admin.ch/de/products/images/ortho_images/swissimage25
(last access: 5 December 2017), 2017a.
a
swi: Digital height model DHM 15/200 of Swisstopo, available at:
https://shop.swisstopo.admin.ch/de/products/height_models/dhm25200
(last access: 6 December 2017), 2017b. a
Uglietti, C., Zapf, A., Jenk, T. M., Sigl, M., Szidat, S., Salazar, G., and
Schwikowski, M.: Radiocarbon dating of glacier ice: overview, optimisation,
validation and potential, The Cryosphere, 10, 3091–3105,
https://doi.org/10.5194/tc-10-3091-2016, 2016. a
Zemp, M., Gärtner-Roer, I., Nussbaumer, S., Hüsler, F., Machguth, H.,
Mölg, N., Paul, F., and Hoelzle, M. (Eds.): Global Glacier Change Bulletin
No. 1 (2012–2013), 230 pp., ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO,
World Glacier Monitoring Service, Zurich, Switzerland, 2015. a
Short summary
In this study we use an existing ice cave at Chli Titlis (3030 m, central Switzerland) to obtain direct access to ice at the glacier base. Using standard glaciological tools as well as the analysis of the isotopic and physical properties we demonstrate that stagnant cold ice conditions still exist fairly unchanged more than 25 years after a pioneering exploration. Our radiocarbon dating of the basal ice indicates that Chli Titlis has likely been ice-covered for about the last 5000 years.
In this study we use an existing ice cave at Chli Titlis (3030 m, central Switzerland) to obtain...