Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-401-2018
https://doi.org/10.5194/tc-12-401-2018
Research article
 | 
31 Jan 2018
Research article |  | 31 Jan 2018

Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

Pascal Bohleber, Helene Hoffmann, Johanna Kerch, Leo Sold, and Andrea Fischer

Related authors

A novel multi proxy approach reveals that the millennial old ice cap on Weißseespitze, Eastern Alps, has preserved its chemical and isotopic signatures despite ongoing ice loss
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625,https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Chemical and visual characterisation of EGRIP glacial ice and cloudy bands within
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023,https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Impact of subsurface crevassing on the depth-age relationship of high-alpine ice cores extracted at Col du Dôme between 1994 and 2012
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Hubertus Fischer, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, and Joseph R. McConnell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-259,https://doi.org/10.5194/tc-2022-259, 2023
Revised manuscript accepted for TC
Short summary
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021,https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Successful practice in early career networks: insights from the polar sciences
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020,https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary

Cited articles

Abermann, J., Kuhn, M., and Fischer, A.: Climatic controls of glacier distribution and glacier changes in Austria, Ann. Glaciol., 52, 83–90, 2011. a
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38, 245–256, 1992. a
Baroni, C. and Orombelli, G.: The alpine “Iceman” and Holocene climatic change, Quaternary Res., 46, 78–83, 1996. a
Bohleber, P., Hoffmann, H., Kerch, J., Sold, L., and Fischer, A.: Stable water isotope record from block profiles in the ice tunnel at Chli Titlis glacier, Switzerland, Pangaea, https://doi.org/10.1594/PANGAEA.885082, 2018. a
Bonani, G., Ivy, S. D., Hajdas, I., Niklaus, T. R., and Suter, M.: AMS 14C age determinations of tissue, bone and grass samples from the Ötztal Ice Man, Radiocarbon, 36, 247–250, 1994. a
Download
Short summary
In this study we use an existing ice cave at Chli Titlis (3030 m, central Switzerland) to obtain direct access to ice at the glacier base. Using standard glaciological tools as well as the analysis of the isotopic and physical properties we demonstrate that stagnant cold ice conditions still exist fairly unchanged more than 25 years after a pioneering exploration. Our radiocarbon dating of the basal ice indicates that Chli Titlis has likely been ice-covered for about the last 5000 years.