Articles | Volume 12, issue 6
https://doi.org/10.5194/tc-12-1957-2018
https://doi.org/10.5194/tc-12-1957-2018
Research article
 | 
11 Jun 2018
Research article |  | 11 Jun 2018

Microtopographic control on the ground thermal regime in ice wedge polygons

Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Charles Abolt on behalf of the Authors (30 Apr 2018)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (15 May 2018) by Peter Morse
AR by Charles Abolt on behalf of the Authors (22 May 2018)  Author's response   Manuscript 
ED: Publish subject to technical corrections (24 May 2018) by Peter Morse
AR by Charles Abolt on behalf of the Authors (25 May 2018)  Manuscript 
Download
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.