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Abstract. The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground 

temperatures. IBecause ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and because 10 

cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between 

microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first 

report on a year of sub-daily ground temperature observations at five 5 depths and nine 9 locations throughout a cluster of low-

centered polygons near Prudhoe Bay, AK, and demonstrate that the rims become the coldest zone of the polygon during winter, 

due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes 15 

against this dataset, achieving an RMSE of less than 1.21°C between observed and simulated ground temperature. Finally, we 

conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs, 

and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive 

to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; 

increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, 20 

promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if 

troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice 

wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern 

thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures 

stabilize. 25 

1 Introduction 

It has long been understood that the formation of ice wedge polygons is intimately linked with thermal contraction 

ground stresses (Leffingwell, 1915; Lachenbruch, 1962; Mackay, 2000). However, changes to the near surface thermal regime 

as polygon microtopography develops are poorly constrained. Across the continuous permafrost zone, winter ground 

temperatures below -10°C commonly drive the opening of a network of cracks, ~4-5 m deep, that bound polygonal regions of 30 
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soil, 10-30 m in diameter. Over timescales of centuries to millennia, repeated cracking and infilling with ice in the same 

locations produces wedge-shaped bodies of ice at the top of the permafrost, up to 5 m wide (Kanevskiy et al., 2013). Particularly 

in coastal regions of the Arctic, theis slow growth of ice wedges results in subtle but distinctive surface topography, as pressure 

between the wedge and the adjacent ground creates rims of raised soil at the perimeters of the polygons. Although only on the 

scale of decimeters, this microtopography profoundly influences tundra hydrology (Liljedahl et al., 2012; 2016), and may exert 5 

equally strong controls on microbial conversion of soil organic carbon into carbon dioxide and methane (Zona et al., 2011; 

Wainwright et al., 2017). Polygon microtopography also controls depth variation in the winter snowpack, which accumulates 

preferentially in low zones, such as the trough space between polygons (Mackay, 1993; Mackay, 2000; Morse and Burn, 2014; 

Wainwright et al., 2015). It is well known that snow accumulation in periglacial terrain strongly controls winter ground 

temperatures, by providing insulation from the atmosphere (e.g., Mackay and MacKay, 1974; Goodrich, 1982). Moreover, it 10 

has been widely observed that changes to polygon microtopography have accelerated in the past three decades, as rising air 

temperatures have increasingly driven the subsidence of troughs and the destruction of rims (Jorgenson et al., 2006; Raynolds 

et al., 2014; Liljedahl et al., 2016). However, feedbacks between microtopographic change and the thermal regime of the ice 

wedge, which directly control the likelihood of sustained ice wedge cracking in the future, are incompletely understood. 

 In this paper, we quantify the relationship between the microtopography of ice wedge polygons and subsurface 15 

temperatures, using a combination of field observations and numerical modeling. We first analyze a high-resolution record of 

ground temperature in key locations beneath a low-centered polygon near Prudhoe Bay, Alaska, and use the observational data 

to calibrate a numerical model of coupled thermal and hydrologic processes at the polygon scale. We then conduct a sensitivity 

analysis to determine the influence of two topographic attributes, rim height and trough depth, on winter temperatures in the 

ice wedges. To our knowledge, our analysis is the first to quantitatively estimate influences on ground temperature associated 20 

with these two variables, which are difficult to control in field experiments, and prone to rapid variation as polygons develop 

and respond to a changing climate (Jorgenson et al., 2006; Raynolds et al., 2014; Liljedahl et al., 2016). The results shed light 

on feedbacks that will determine the sustainability of ice wedge cracking in the near future, as warming air temperatures drive 

rapid surface deformation in polygonal terrain. The results are also relevant to understanding of processes associated with 

historical development of ice wedge polygons, including the formation of “secondary” ice wedges, or comparatively young 25 

wedges that subdivide older polygons, observed in modern and ancient systems (Burn and O’Neill, 2015).   

2 Background 

A substantial amount of research has explored interactions between ground temperatures and ice wedge cracking. The 

earliest, and still most rigorous, mechanical analysis was conducted by Lachenbruch (1962, 1966), who concluded that the 

probability of a cracking event is determined by two criteria: whether the ground temperature cools below a variable threshold 30 

near -10°C, and whether the rate of cooling is sufficient. These conditions are most crucial at the top of the permafrost, where 

most ice wedge cracks originate (Mackay, 1984). Recently, a number of investigations have used electronic temperature 
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sensors to more tightly constrain thermal conditions at the time of cracking at field sites across the Arctic (e.g., Mackay, 1993; 

Allard and Kasper, 1998; Christiansen, 2005; Fortier and Allard, 2005; Kokelj et al., 2007, O’Neill and Christiansen, 2018). 

Although heterogeneity exists between sites, it has been generalized that ice wedge cracking is most favorable when ground 

temperature at the top of the permafrost drops below -13°C, and the rate of cooling exceeds 0.1°C d-1 for two days or more 

(Morse and Burn, 2013; Kokelj et al., 2014).   5 

In contrast to research on ice wedge cracking, relatively few investigations have explored systematic variation in 

ground temperatures associated with polygon microtopography. In particular, few datasets have been published that monitor 

ground temperature beneath distinct zones of a polygon in the same season. Nonetheless, one consistently observed trend is 

that the rims of a low-centered polygon tend to become several degrees colder in winter than the center or troughs (Mackay, 

1993; Christiansen, 2005; Morse and Burn, 2014; Atchley et al., 2015). This effect is attributed to the thinner snowpack on top 10 

of the rims, as wind-driven redistribution of snow enhances accumulation in microtopographic lows. Consistent with these 

observations, previous conceptual models of the thermal regime of the active layer in ice wedge polygons have incorporated 

the idea that cooling is enhanced in raised zones, such as rims (Christiansen, 2005; Morse and Burn, 2014) and impeded in 

low ones (Gamon et al., 2012).. However, the strength of these effects, and interactions between them at the polygon scale, 

remain unclear. For example, if the influence of enhanced cooling in the rims of a low-centered polygon extends to adjacent 15 

regions of the subsurface, it seems likely that the gradual development of rims swhould promote colder temperatures in the ice 

wedge. This effect would represent a positive feedback on development of low-centered polygons, because colder temperatures 

favor cracking and the expansion of the ice wedge. On the other hand, it has also been suggested that development of relief in 

the rims drives precisely the opposite effect, by increasing snow entrapment in the troughs, thereby enhancing insulation of 

the ice wedges (Lachenbruch, 1966). 20 

Improved understanding of interactions between microtopography, snow depth, and ground temperature is needed to 

resolve these conflicting conceptual models, because feedbacks between these variables may have important ramifications for 

ice wedge cracking at all stages of polygon development. For example, it was argued recently that the presence of secondary 

ice wedges, or young wedges that subdivide older polygons, results from deactivation of the older primary network due to 

increased snow entrapment in the troughs, either as the rims grow or the trough itself subsides (Morse and Burn, 2013; Burn 25 

and O’Neill, 2015). This conceptual model has important implications for interpretation of both modern wedges and 

Pleistocene-aged ice wedge casts, and is supported by observations that secondary ice wedges are rare in erosive environments 

(such as hillslopes) or depositional settings (such as river deltas), where polygon microtopography tends to be muted or non-

existent (Mackay, 1990, 1995)would inform interpretation of both modern wedges and relict Pleistocene-aged ice wedge casts. 

However, it competes with a second hypothesis, that secondary wedges are instead reflections of infrequent severe winter 30 

conditions, during which cracking in the primary network alone is insufficient to relieve thermal contraction stresses 

(Dostovalov and Popov, 1966). This latter hypothesis was supported by a numerical model of ground cracking under an 

imposed tensile stress (Plug and Werner, 2002), but the model was criticized for failing to represent heterogeneity in the 

subsurface stress field associated with microtopography (Burn, 2004).  
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Feedbacks between microtopography and subsurface temperatures are likewise relevant to conceptualizing modern 

thermokarst development in the Arctic, as the changing form of polygons may influence the probability of sustained cracking 

in degraded ice wedges. As permafrost degradation has accelerated in recent decades (Walker et al., 1987; Osterkamp and 

Romanovsky, 1996; Jorgenson et al. 2006; Raynolds et al., 2014; Liljedahl et al., 2016), thaw in the upper portions of ice 

wedges has increasingly triggered trough subsidence and the destruction of low-centered polygon rims, creating convex-up, 5 

high-centered polygons. Raynolds et al. (2014) condensed years of field observations into a conceptual model of the process, 

suggesting that, while the degradation of low-centered polygon rims has historically been a reversible process, much of the 

recent thermokarst has proceeded to irreversible extents, due to the destruction of an ice-rich “intermediate” or “transition 

layer” at the top of the permafrost, which normally buffers deeper zones from thaw. Presumably, the permanence (or 

reversibility) of modern thermokarst will also be determined by the potential for future ice wedge cracking, which will be 10 

necessary to re-establish polygon rims. Understanding of the potential for ice wedges in degraded troughs to cool to 

temperatures suitable for cracking is therefore important for predicting the duration of changes to landscape-scale processes 

associated with high-centered polygon development, such as increased runoff, decreased evapotranspiration (Liljedahl et al., 

2012; 2016), and increased emissions of carbon dioxide (Wainwright et al., 2015). 

3 Methods 15 

3.1 Study area and data acquisition 

The study site surrounds is within a low-centered polygon network approximately 40 km south of Prudhoe Bay and 

1 km west of the Dalton Highway in Alaska’s North Slope Borough (Fig. 1aA). The surficial geology of the region is dominated 

by fluvial and marine-fluvial silty sands, associated with streams flowing north from the Brooks Range (Jorgenson and Shur, 

2007; Raynolds et al., 2014). These deposits are capped with approximately 2 m of Pleistocene-aged aeolian silt, which grades 20 

upward into a surface mantle of peat (Everett, 1980). Active layer thickness varies from 70-90 cm, extending into the aeolian 

silt layer. Vegetation at the site is typical of the region, and consists almost exclusively of low-lying sedges and grasses. Mean 

annual air temperature from 2000-2015 was -8.9°C, as estimated by Noah lLand sSurface mModel output associated withfrom 

NASA’s Global Land Data Assimilation System (GLDAS), which provides estimates of global weather conditions from year 

2000 to the present, operating at a spatial resolution of 0.25° and a temporal resolution of 3 hrs (Rodell et al., 2004). 25 

 The microtopography of the studied polygon (outlined in green) is represented in a 50 cm resolution lidar digital 

elevation model (DEM) (Fig. 1b). Like many low-centered polygons south of Prudhoe Bay, the polygon has modest relief 

compared with polygons elsewhere in the Arctic, with surface elevations ranging from ~78.8-79.2 m above sea level. The 

relatively low rims and the presence of standing water at the eastern vertex of the polygon suggest that some ice wedge 

degradation has occurred in recent decades, as documented at nearby sites (Raynolds et al. 2014).  30 

 Field work was conducted in late July, 2014 and early September, 2015. During the first visit, temperature “sensor 

rods” (Alpha Mach, Sainte-Julie, Quebec, Canada) were installed across the polygon (locations shown as blue dots in Fig. 1b). 
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Each rod was equipped with thermistors embedded in a water-proof plastic pipe, and driven into the active layer to observe 

temperature at depths of 10, 20, 30, 40, and 50 cm.  Each sensor rod was equipped with an onboard power source and data 

logger programmed to record temperature every three hours. The temperature resolution of the sensors was 0.125°C, and their 

accuracy was estimated by the manufacturer at ±0.5°C. Sensor rods were installed into a mix of higher-elevation rim sites, and 

lower-elevation sites from the polygon interiors. Rods were removed and data were downloaded in September, 2015. An 5 

example of the data from rod cen1 (Fig. 2) displays temperature data from September 2014 through August 2015. Figures 

representingData from all data rods are included in the Supplemental Information (Fig. S1).  

 In addition to sensor rod installation, soil cores were collected in 2014 and subsequently analyzed for hydraulic and 

thermal properties. Soil cores were collected in both the center and the rims, and at depths varying from ground surface to 

19 cm. Soil cores below 19 cm could not be collected due to a high water table. Laboratory analyses of the soil cores, described 10 

in the Supplemental Information (Text S1, Table S1), informed the parameterization of our numerical model. 

3.2 Statistical analysis of observational data 

Prior to constructing a numerical model, data from the sensor rods were analyzed to understand differences in the 

subsurface thermal regime between the rims and other areas of the polygon. The seasonality of these differences was also 

evaluated to determine the potential relationship with snow cover. The one-tailed rank sum test was used to evaluate the 15 

hypothesis that minimum winter temperature in the rims (n=3) are colder than polygon centers (n=6) at all observed depths, 

and to determine whether the autumn freezing curtain is shorter in the rims than elsewhere. Freezing curtain duration was 

defined at each sensor as the length of time that ground temperature remained between -0.5°C and 0.5°C, or approximately 

zero within the accuracy of the sensors, due to the release of latent heat as soil water freezes. We expected that rims would 

experience shorter freezing curtains, due to enhanced cooling and decreased soil water content. Finally, to analyze seasonality, 20 

the rank sum test was used to determine whether mean monthly temperatures are coldest in the rims, each month from 

September 2014 through August 2015. We expected that rims would only be colder than the centers during months with 

significant snow cover. 

3.3 Overview of the Advanced Terrestrial Simulator 

Our numerical model used the Advanced Terrestrial Simulator (ATS, version 0.86), a code developed by the United 25 

States Department of Energy within the Amanzi framework (Moulton et al., 2011) to simulate surface and near-surface thermal 

hydrology in variably saturated media (https://github.com/amanzi/ats). ATS uses a multi-physics process management tool 

called Arcos (Coon et al., 2015) to allow for flexibility in coupling self-contained models for each component of the physical 

system (e.g., the subsurface mass balance and the surface energy balance). ATS was chosen due to its successful prior for its 

record of successful application to lowland permafrost terrain (Atchley et al., 2015; 2016; Harp et al., 2016; Sjoberg et al., 30 

2016; Schuh et al., 2017; Jan et al., 2018), and for its rich collection of features tailored to simulating hydrologic processes in 

cold environments. One component of ATS that is particularly useful for our study is a unique module that emulates wind-
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blown redistribution of snow across topography using a diffusion-wave equation, taking the same mathematical form as the 

Mannings equation. This causes snow accumulation to vary inversely with elevation, by leveling the top of the snowpack into 

a flat surface. In the present implementation, we coupled the subsurface conservation of mass and energy with a surface energy 

balance model, which was driven by meteorological data and allowed for accumulation of liquid water, ice, and snow at the 

surface. An overview of the partial differential equations governing surface and subsurface processes is presented in Painter 5 

et al. (2016). A detailed explanation of the surface energy balance, including description of a snowpack aging model used to 

estimate changing snow thermal conductivity and albedo throughout the winter, is presented in Atchley et al. (2015). 

3.4 Model construction, calibration, and sensitivity analysis 

Construction and calibration of the numerical model followed the workflow described by Atchley et al. (2015), with 

each model run comprising three computer simulations. In the first simulation, a water table was established near the surface 10 

in isothermal conditions by defining a constant-pressure (Dirichlet) boundary condition at the bottom of the domain. In the 

second simulation, permafrost conditions were established by adding a constant-temperature boundary condition at the bottom 

(50 m depth), allowing the soil column to freeze from below. In the third simulation, the surface energy balance was introduced, 

employing meteorological data to define transient thermal and hydraulic boundary conditions at the top of the domain.  

 Due to the availability of field samples used to estimate soil physical properties, and in an effort to avoid over-fitting 15 

the model, calibration focused solely on snow pack parameters. As described in the Supplemental Information (Text S2), the 

calibrated parameters included the thermal conductivity of fresh snow, the snow redistribution coefficient used to transport 

snowpack across variable topography, and a snowfall multiplier used to correct for under-reporting in our meteorological 

forcing data.   

For calibration, a 2D domain was developed using topography from the lidar DEM, which included four ground materials 20 

(Fig. 3). The domain extended laterally from approximately 1 m NW of rod cen3 to 2 m SE of rod cen4, intersecting five 

sensor rods in different microtopographic positions. The bottom boundary temperature was set at -6°C, characteristic of nearby 

borehole observations (Romanovsky et al., 2009). To approximate the gradation of surficial peat into mineral soil at our site, 

the upper 2.5 cm of the soil column was defined as unconsolidated peat, and the next 30 cm as more tightly compacted peat. 

Soil hydraulic and thermal parameters for these upper layers were assigned from laboratory estimates from the core samples 25 

(See Supplemental Information for methods (Text S2) and results (Table S1)). The lower soil layers were modeled as mineral 

soils, to which the ATS default parameters, characteristic of a silty sand, were applied. Ice wedges were included beneath the 

troughs at a depth of 80 cm, consistent with an active layer survey conducted in September, 2015. Physical parameters for all 

ground materials used in the model are summarized in Table 1.  

  Meteorological variables used to drive simulations included air temperature, wind speed, incident shortwave 30 

radiation, longwave radiation, relative humidity, rainfall, and snowfall. Time series of each variable were derived from the 

output of the Noah Land Surface Model as distributed by GLDAS (Rodell et al., 2004), which provides estimates of global 

weather conditions from year 2000 to the present, operating at a spatial resolution of 0.25° and a temporal resolution of 3 hrs 
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(Rodell, 2004). . Meteorological data were extracted from the pixel centered at  148.875°W, 69.875°N (approximately 5 km 

from our field site) for the time period from September 1, 2010-August 31, 2015, and each variable was averaged into daily 

means. The first four years of this period were used as spin-up, and the fifth year was used to compare simulated against 

observed temperatures.  

 After obtaining a suitable calibration using field site microtopography, a sensitivity analysis was conducted by 5 

repeating simulations with hydraulic and thermal parameters held constant, but with the height of the rims and the depth of the 

troughs being systematically altered. Following each simulation, winter temperatures were extracted from 2014-2015 from the 

uppermost cell at the center of the SE (right) ice wedge, and compared to the criteria identified by Morse and Burn (2013) that 

favor ice wedge cracking. Simulations scanned through 6 different rim heights, varying from -10 cm to +15 cm in increments 

of 5 cm; and 5 different trough depths, varying from unchanged to 40 cm deeper, in increments of 10 cm. These ranges were 10 

chosen to recreate the variability observed near our field site, and to match recent documentation of troughs impacted to various 

degrees by ice wedge degradation (Jorgenson et al., 2006).  

 The ensemble of topographies for our analysis (Fig. 4) wereas created by altering the original mesh used to represent 

field site topography. When either trough depth or rim height was increased, the elevation of every rim or trough node was 

directly reassigned. Abolt et al. (2017) showed that the progression of polygonal topography from low-centered to high-15 

centered form is closely approximated by the linear hillslope diffusion equation; therefore, when relief was reduced in the 

rims, a linear diffusion operator was applied to all non-trough nodes until the elevation of the southeast rim decreased by the 

desired amount. This procedure reproduced the smooth, convex-up topography of a high-centered polygon that is expected to 

develop as the rims of a low-centered polygon degrade.   

4 Results 20 

4.1 Statistical analysis of observational data 

Minimum winter temperatures (Table 2) and freezing curtain durations (Table 3) observed among all sensor rods 

showed considerable variability, with temperatures in the rims becoming colder and falling below 0°C sooner than those in 

the centers. The results of the rank sum tests (Table 4) confirm that the difference between minimum winter temperature in the 

rims and in the centers is significant at all depths (p < 0.025, indicating a low probability that variations could be explained by 25 

random processes), with median differences varying from 3.2°C at 10 cm to 2.3°C at 50 cm depth. Similarly, freezing curtains 

are shorter in the rims than the centers at all observed depths (p < 0.025), the median difference being approximately 10 days.  

 The results of the rank sum tests, evaluating the hypothesis that rims experience mean monthly temperatures colder 

than the centers, reveal a stark seasonal pattern in which rims are significantly colder than the center (p < 0.1) only during the 

winter (Fig 5). The difference first becomes significant at a depth of 10 cm in October, but requires an additional two months 30 

to become significant at a depth of 50 cm. Rims remain significantly colder than centers through the month of March, after 

which there is no significant difference through the period of observation. 
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4.2 Model calibration 

Results of model calibration indicate that the best-performing snowfall multiplier was 1.7. Using this value, maximum 

snow depth in the center of the polygon during the winter of 2014-2015 was approximately 45 cm, comparing well with ground 

observations from SNOTEL stations at Deadhorse and Sagwon (approximately 40 km north and 40 km south of the study site, 

with maximum depths of 53 cm and 58 cm, respectively; data available at https://www.wcc.nrcs.usda.gov/snow/). The optimal 5 

thermal conductivity for freshly fallen snow was 0.021 W m-1 K-1, which is within the range of recently published field 

measurements (Riche and Scheebeli, 2013; Domine et al., 2016). Additionally, the snow redistribution coefficient was reduced 

60% from the ATS default value, effectively increasing the speed with which the snowpack developed a level surface in winter. 

Using these parameters, RMSE between simulated and observed daily temperature from the year of observation, incorporating 

all twenty-five25 sensors embedded in the 2D transect (5 thermistors in each of 5 sensor rods), was approximately 1.0°C. 10 

RMSE at individual rods varied from ~1.4°C at rod cen4 to ~0.7°C at rod cen3. Plots comparing simulated and observed 

ground temperature at rods cen1 and rim1 demonstrate a close visual match (Fig. 6). A snapshot of simulated ground 

temperature and snowpack on December 24, 2014 (Fig. 7) clearly illustrates zonation in the ground thermal regime, whereby 

the rims become the coldest zone of the polygon. 

4.3 Sensitivity analysis 15 

The criteria we used to determine favorable conditions for ice wedge cracking were whether winter 2014-2015 

temperatures at the top of the southeast ice wedge cooled below -13°C, and whether the rate of cooling surpassed 0.1°C d-1 for 

two days or more (Morse and Burn, 2013). The range of topographies simulated in our sensitivity analysis straddled these 

conditions (Table 5), with minimum temperatures at the top of the ice wedge varying from --15.16°C in a polygon with rims 

15 cm higher and a trough the same depth as our field site, to -12.87°C in a polygon with rims 10 cm lower and a trough 40 20 

cm deeper. In all cases in which temperature cooled below -13°C, the rate of cooling was sufficient to favour cracking. 

Minimum winter temperature in the ice wedge increased with trough depth in almost all cases, and always decreased with rim 

height. Cracking was determined to be favorable in most simulations, as the ice wedge failed to cool below -13°C only when 

rim height was less than our field site, and trough depth was greater. 

5 Discussion 25 

5.1 Zonation in the subsurface thermal regime at our field site 

Data from our field site demonstrated a clear pattern in which low-centered polygon rims become the coldest region 

of the subsurface in winter, even in a polygon with relatively modest relief. The stark seasonality of this pattern, whereby rims 

become colder than the centers only after snow has accumulated on the ground, is consistent with the hypothesis that most of 

the variation in subsurface temperatures can be explained by snow depth variation associated with microtopography. Although 30 
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this finding was expected, our 2D model using field site topography is, to our knowledge, the first physical simulation at the 

polygon scale to demonstrate that depth variation induced by leveling of the snowpack surface is sufficient to explain observed 

zonation in the subsurface thermal regime. Our confidence in the model is reinforced by the low RMSE between observed and 

simulated temperatures, obtained using soil physical parameters derived from core samples, and a calibrated estimate of snow 

thermal conductivity that fits recent field measurements (Riche and Scheebeli, 2013; Domine et al., 2016). 5 

 The findings from our rank sum tests, that even relatively small rims become colder than the polygon centers in 

winter, and that rims fully freeze before the rest of the polygon, support the hypothesis that rims are sites of enhanced cooling 

in low-centered polygons, as suggested suggested by Christiansen (2005)). These findings are also consistent with data and a 

conceptual model presented by Morse and Burn (2014), who argued that the early completion of freeze up in the rims creates 

a closed hydrologic system in low-centered polygons, which drives the formation of frost blisters when the active layer is 10 

saturated. Moreover, ourOur simulation results implyimply that the effects of enhanced cooling in the rims extend to adjacent 

regions of the subsurface, as temperature gradients throughout the active layer in early winter favor the transfer of heat from 

the center and the troughs toward the rims (Fig. 7). Complementing this trend, a number of physical factors underscore the 

potential for rims to act as preferential outlets of subsurface energy. Because the rims are the first region of the polygon to 

experience sub-freezing temperatures, laterally-oriented thermal gradients are established very early in winter, just as large 15 

quantities of latent heat are released by phase change of soil water (from liquid to solid) in the centers and troughs. At precisely 

the same time, the thermal conductivity of soil in the rims also increases abruptly due to freezing. Working synergistically, 

these factors can deliver a considerable boost to freezing and cooling processes in subsurface regions adjacent to the rim, 

including the ice wedge.  

5.2 Sensitivity of ice wedge temperatures to topography 20 

The key insight delivered by our sensitivity analysis is that both trough depth and rim height have substantial influence 

on wintertime temperatures in the ice wedge. Unsurprisingly, deeper troughs are associated with warmer ice wedge 

temperatures, due to increased insulation of the active layer directly above the wedge. Perhaps less intuitively, however, rim 

height appears to hold even greater influence on the thermal regime of the ice wedge: leaving other factors constant, varying 

rim height across a 25 cm range produced  up to a 2.1˚C change in minimum ice wedge temperature, compared with 1.1˚C of 25 

variation associated with a 40 cm range of trough depth (Table 5). Rims in our simulations consistently acted as preferential 

outlets of energy from the subsurface in winter, because in all cases, increased rim heights were associated with colder ice 

wedge temperatures, due to lateral heat conduction from the troughs. The relatively high sensitivity of ice wedge temperature 

to rim height implies that most of the cooling experienced by the ice wedge in winter occurs through the rims, rather than 

through the active layer of the troughs. Moreover, the proportion of cooling attributable to the rim increases with rim size, 30 

because larger rims decrease the sensitivity of ice wedge temperature to trough depth (Table 5). 

Compared with the criteria determined by Morse and Burn (2013), our results suggest that this variability in ice wedge 

temperature may determine whether or not a crack occurs in a given winter. This conclusion is supported by prior field studies. 



10 

 

In Svalbard, for example, Christiansen (2005) it has been suggested that most of the cooling experienced by an ice wedge 

occurs through the rims, (Christiansen, 2005), and Watanabe et al. (2017) observed that ice wedge cracking is most active in 

polygons with well-developed rims hosting minimal snow cover ((Watanabe et al., 2017). Along the Beaufort Sea coast in 

north-western Canada, it has been observed that ice wedges beneath well-developed troughs crack infrequently, presumably 

due to the insulation provided by increased snow cover (Mackay, 2000; Burn, 2004). These observations affirm that the effects 5 

of rim and trough morphology on the ground thermal regime at the periphery of the polygon are sufficient to change the 

frequency of cracking events. 

 One practical implication of our results is that the effects of a deep trough on cracking behaviour are minimized if 

large rims are maintained, but grow become more significant as rims are destroyed. For example, in the final year of our 

simulations, the ice wedge temperatures did not cool belowdo not reach -13˚C in a polygon with rims smaller than our field 10 

site and a trough 40 cm lower, representing an advanced stage of thermokarst development. On the other hand, the ice wedge 

cools temperatures drop considerably below -13˚C in a polygon that has equally degraded troughs, but has rims 15 cm higher 

than the field site, a form resembling the enigmatic “fortress polygons” described by Root (1978) and Mackay (2000). This 

finding implies that ice wedge cracking is far more favorable, and therefore more frequent, in fortress polygons as compared 

with high-centered polygons, despite that both forms represent thermokarst trajectories (Mackay, 2000). Moreover, this 15 

mechanism could help explain the persistence of low-centered form in fortress polygons, which would be reinforced by 

sustained ice wedge growth. 

 The role of rims as preferential outlets of subsurface heat is consistent with the idea that topographic highs in ice 

wedge polygons cool more efficiently than depressed areas (Christiansen, 2005; Gamon et al., 2012; Watanabe et al., 2017), 

but conflicts with the idea previously suggested by Lachenbruch (1966), that rim development gradually suppresses ice wedge 20 

cracking by increasing snow entrapment in the troughs. It is important to acknowledge that our model does not fully negate 

Lachenbruch’s hypothesis, as conditions not incorporated into the sensitivity analysis, such as vegetation differences between 

the rims and center, can also influence snow accumulation patterns and energy exchange between the ground and atmosphere 

(Gamon et al., 2012). Nonetheless, our results strongly suggest that, considered as an independent variable, increased rim 

height enhances wintertime cooling in the ice wedge.  25 

 Overall, our analysis strongly affirms the idea that the micro topography of ice wedge polygons drives considerable 

and systematic spatial variation in the subsurface thermal regime, which must be considered in any conceptualization of ground 

thermal contraction stresses (Lachenbruch, 1962; 1966; Burn, 2004; Morse and Burn, 2013; Burn and O’Neill, 2015; 

Lachenbruch, 1962; 1966). Regarding historical polygon development, ourthe results support the hypothesis of Morse and 

Burn (2013) and Burn and O’Neill (2015) that feedbacks associated with microtopographic change are sufficient to explain 30 

the presence of secondary wedges in modern and ancient polygons, as rim destruction and trough deepening are common 

events on the tundraacross much of the tundra, and both suppress the potential for cracking. This conclusion is important for 

interpretation of relict ice wedge casts, because it implies that the absence of secondary ice wedges, rather than reflecting a 

climatic signal, may indicate that wedges grew syngenetically (i.e., in an aggrading landscape) or anti-sygenetically (in an 



11 

 

erosive landscape). Modern wedges found in such systems are associated with only modest, or altogether absent, 

microtopography (Mackay, 1990; 1995; Burn and O’Neill, 2015), and surveys using ground penetrating radar in these settings 

confirm that secondary wedges are rare, even in polygons old enough to have been exposed to many extreme winters (Morse 

and Burn, 2013). On the other hand, both the development of microtopography and deformation through thermokarst processes 

tend to be more pronounced above epigenetic ice wedges (i.e., those forming below stable ground surfaces, such as our field 5 

site).  If the primary ice wedges surrounding a polygon are deactivated through these mechanisms in such settings are 

deactivated through a combination of rim destruction and trough deepening, a secondary wedge may form so long as thermal 

conditions in the center of the polygon remain favorable for cracking. The new wedge would be initiated by contraction stresses 

which had been relieved in previous winters through activity in the primary network. Cracking in the new wedge would become 

increasingly frequent if rims begin to develop adjacent to it, or if the troughs above the primary network continue to subside. 10 

 This same concept, that low rims and deep troughs suppress ice wedge cracking, also has important implications 

regarding the permanence of recent thermokarst development across the Arctic (e.g., Jorgenson et al., 2006; Liljedahl et al., 

2016). It has already been emphasized that the destruction of an ice-rich transition layer at the top of the permafrost may render 

irreversible much of the regional-scale thermokarst observed in the past three decades (Raynolds et al., 2014). Our model 

indicates that changes to topography associated with ice wedge thaw compound this effect, as the development of high-centered 15 

polygon mictrotopography impedes the ability of the ice wedge to cool to temperatures favorable for cracking, even relative 

to scenarios with minimal microtopography (Table 5).. Because of this topographic disadvantage, the ice wedges surrounding 

high-centered polygons should crack infrequently, and might only return to normal levels of activity if the winter climate 

becomes colder (or less snowy) than the conditions in which the wedges first formed. Thus, the re-establishment of rims in 

thermokarst terrain is unlikely should future air temperatures remain on a warming trajectory, or even if the climate stabilizes. 20 

This implies that regional scale changes to tundra hydrology (Liljedahl et al., 2012; 2016) and microbial processing of soil 

organic carbon (Zona et al., 2011; Wainwright et al., 2015) associated with high centered polygon development are likely to 

persist, once initiated, for timescales mirroring regional climate fluctuations. 

6 Conclusions 

Our analysis of observational data confirms that the microtopography of ice wedge polygons drives considerable, 25 

systematic variation in near surface ground temperatures, even in a set of polygons with relatively modest relief. This variation 

is most notable in winter, as subsurface cooling is most efficient beneath microtopographic highs, and impeded beneath 

microtopographic lows. Our numerical model reveals that rims act as preferential outlets of subsurface heat in low-centered 

polygons, because lateral temperature gradients drive energy transfer from adjacent regions of the subsurface toward the rims 

in winter. Therefore, increased rim size drives colder temperatures in the ice wedge. Rim size and trough depth represent 30 

critical factors influencing whether an ice wedge becomes cold enough to crack during winter. Therefore, feedbacks between 

microtopographic change and subsurface temperatures can explain deactivation of the primary network and development of 
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secondary ice wedges in modern and ancient polygons. The absence of secondary ice wedges in relict cast systems may reflect 

syngenetic or anti-syngenetic growth, which tends to result in muted microtopography, rather than a climatic signal. Because 

decreased rim size and increased trough depth both suppress ice wedge cracking, development of modern thermokarst 

topography is likely to reduce rates of ice wedge growth, precluding the re-establishment of rims around degraded troughs. 

Acknowledgements 5 

We are grateful for the support provided for this research, which included: NASA’s Jet Propulsion Laboratory under 

contract #C021199 (Erika Podest is our Project Manager); the NASA Earth and Space Science Fellowship program, for an 

award to CJA; and the Next Generation Ecosystem Experiments Arctic (NGEE-Arctic) project (DOE ERKP757) funded by 

the Office of Biological and Environmental Research in the US Department of Energy Office of Science; and Todd Caldwell 

and Toti Larson (Bureau of Economic Geology, The University of Texas at Austin) for lively conversation and contributions 10 

to field work. We extend our thanks to the editor and two anonymous reviewers for detailed and constructive suggestions for 

revisions to the manuscript. 

References  

Abolt, C. J., Young, M. H. and Caldwell, T. G.: Numerical Modelling of Ice-Wedge Polygon Geomorphic Transition, 

Permafrost and Periglacial Processes, 28(1), 347–355, doi:10.1002/ppp.1909, 2017. 15 

Allard, M. and Kasper, J. N.: Temperature conditions for ice-wedge cracking: Field measurements from Salluit, northern 

Quebec, in Proceedings of the Seventh International Conference on Permafrost, pp. 5–12, National Research Council of 

Canada., 1998. 

Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K. and Romanovsky, V. E.: Using field 

observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geoscientific Model 20 

Development, 8(9), 2701–2722, doi:10.5194/gmd-8-2701-2015, 2015. 

Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. and Wilson, C.: Influences and interactions of inundation, peat, and 

snow on active layer thickness, Geophysical Research Letters, doi:10.1002/2016GL068550, 2016. 

Burn, C. R.: A field perspective on modelling‘single-ridge’ ice-wedge polygons, Permafrost and Periglacial Processes, 15(1), 

59–65, doi:10.1002/ppp.475, 2004. 25 

Burn, C. R. and O’Neill, H. B.: Subdivision of ice-wedge polygons, western Arctic coast, Canadian Geotechnical Society, 

Quebec, QC., 2015. 

Christiansen, H. H.: Thermal regime of ice-wedge cracking in Adventdalen, Svalbard, Permafrost and Periglacial Processes, 

16, 87-98, doi:10.1002/ppp.523, 2005. 



13 

 

Coon, E. T., David Moulton, J. and Painter, S. L.: Managing complexity in simulations of land surface and near-surface 

processes, Environmental Modelling & Software, 78, 134–149, doi:10.1016/j.envsoft.2015.12.017, 2016. 

Domine, F., Barrere, M. and Sarrazin, D.: Seasonal evolution of the effective thermal conductivity of the snow and the soil 

in high Arctic herb tundra at Bylot Island, Canada, The Cryosphere, 10(6), 2573–2588, doi:10.5194/tc-10-2573-2016, 

2016. 5 

Dostovalov, B. N. and Popov, A. I.: Polygonal systems of ice-wedges and conditions of their development, in Proceedings of 

the International Conference on Permafrost, pp. 71–76, National Academy of Sciences-National Research Council., 

1966. 

Fortier, D. and Allard, M.: Frost-cracking conditions, Bylot Island, eastern Canadian Arctic archipelago, Permafrost and 

Periglacial Processes, 16(2), 145–161, doi:10.1002/ppp.504, 2005. 10 

Gamon, J. A., Kershaw, G. P., Williamson, S. and Hik, D. S.: Microtopographic patterns in an arctic baydjarakh field: do 

fine-grain patterns enforce landscape stability?, Environmental Research Letters, 7(1), 015502, doi:10.1088/1748-

9326/7/1/015502, 2012. 

Goodrich, L. E.: The influence of snow cover on the ground thermal regime, Canadian geotechnical journal, 19(4), 421–432, 

1982. 15 

Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J., Romanovsky, V. E. and Rowland, J. C.: Effect of soil 

property uncertainties on permafrost thaw projections: a calibration-constrained analysis, The Cryosphere, 10(1), 341–

358, doi:10.5194/tc-10-341-2016, 2016. 

Isarin, R. F. B.: Permafrost distribution and temperatures in Europe during the Younger Dryas, Permafrost and Periglacial 

Processes, 8(3), 313–333, 1997. 20 

Jan, A., Coon, E. T., Painter, S. L., Garimella, R. and Moulton, J. D.: An intermediate-scale model for thermal hydrology in 

low-relief permafrost-affected landscapes, Computational Geosciences, 22(1), 163-177, doi:10.1007/s10596-017-9679-

3, 2018. 

Johnson, W. H.: Ice-wedge casts and relict patterned ground in central Illinois and their environmental significance, 

Quaternary Research, 33(1), 51–72, 1990. 25 

Jorgenson, M. T. and Shur, Y.: Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle, 

Journal of Geophysical Research, 112(F2), doi:10.1029/2006JF000531, 2007. 

Jorgenson, M. T., Shur, Y. L. and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophysical 

Research Letters, 33(2), doi:10.1029/2005GL024960, 2006. 

Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N., Wickland, K., Striegl, R. and Koch, J.: Role 30 

of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization, Journal of 

Geophysical Research: Earth Surface, 120(11), 2280–2297, doi:10.1002/2015JF003602, 2015. 



14 

 

Kanevskiy, M., Shur, Y., Jorgenson, M. T., Ping, C. L., Michaelson, G. J., Fortier, D., Stephani, E., Dillon, M. and 

Tumskoy, V.: Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska, Cold Regions Science and 

Technology, 85, 56-70, doi:10.1016/j.colregions.2012.08.002, 2013. 

Kokelj, S. V., Pisaric, M. F. J. and Burn, C. R.: Cessation of ice wedge development during the 20th century in spruce 

forests of eastern Mackenzie Delta, Northwest Territories, Canada, Canadian Journal of Earth Sciences, 44, 1503–1515, 5 

2007. 

Kokelj, S. V., Lantz, T. C., Wolfe, S. A., Kanigan, J. C., Morse, P. D., Coutts, R., Molina-Giraldo, N., and Burn, C. R.: 

Distribution and activity of ice wedges across the forest-tundra transition, western Arctic Canada, Journal of 

Geophysical Research: Earth Surface, 119, 2032-2047, doi:10.1002/2014JF003085, 2014. 

Lachenbruch, A. H.: Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, Special Paper, 10 

Geological Society of America, New York., 1962. 

Lachenbruch, A. H.: Contraction theory of ice-wedge polygons: A qualitative discussion, in Proceedings of the International 

Conference on Permafrost, pp. 63–70, National Academy of Sciences-National Research Council., 1966. 

Leffingwell, E. de K.: Ground-ice wedges: The dominant form of ground-ice on the north coast of Alaska, The Journal of 

Geology, 23(7), 635–654, 1915. 15 

Liljedahl, A. K., Hinzman, L. D. and Schulla, J.: Ice-wedge polygon type controls low-gradient watershed-scale hydrology, 

in Proceedings of the Tenth International Conference on Permafrost, The Northern Publisher., 2012. 

Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. 

C., Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., Wilson, 

C. J., Yabuki, H. and Zona, D.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra 20 

hydrology, Nature Geoscience, doi:10.1038/ngeo2674, 2016. 

Mackay, J. R.: The direction of ice-wedge cracking in permafrost: downward or upward?, Canadian Journal of Earth 

Sciences, 21(5), 516–524, 1984. 

Mackay, J. R.: Some observations on the growth and deformation of epigenetic, syngenetic, and anti-syngenetic ice wedges, 

Permafrost and Periglacial Processes, 1, 15-29, doi:10.1002/ppp.3430010104, 1990. 25 

Mackay, J. R.: Air temperature, snow cover, creep of frozen ground, and the time of ice-wedge cracking, western Arctic 

coast, Canadian Journal of Earth Sciences, 30(8), 1720–1729, 1993. 

Mackay, J. R.: Ice wedges on hillslopes and landform evolution in the late Quaternary, western Arctic coast, Canada, 

Canadian Journal of Earth Sciences, 32, 1093-1105, doi:101139/e5-091, 1995. 

Mackay, J. R.: Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study, Géographie 30 

physique et Quaternaire, 54(1), 41, doi:10.7202/004846ar, 2000. 

Mackay, J. R. and MacKay, D. K.: Snow cover and ground temperatures, Garry Island, NWT, Arctic, 287–296, 1974. 

Morse, P. D. and Burn, C. R.: Field observations of syngenetic ice wedge polygons, outer Mackenzie Delta, western Arctic 

coast, Canada, Journal of Geophysical Research: Earth Surface, 118(3), 1320–1332, doi:10.1002/jgrf.20086, 2013. 



15 

 

Morse, P. D. and Burn, C. R.: Perennial frost blisters of the outer Mackenzie Delta, western Arctic coast, Canada, Earth 

Surface Processes and Landforms, 39, 200-213, doi:10.1002/esp.3439, 2014. 

Moulton, D., Buksas, M., Pritchett-Sheats, L., Day, M., Berndt, M., Garimella, R., Hammond, G. and Meza, J.: High-level 

design of Amanzi, the multi-process high performance computing simulator, United States Department of Energy., 

2011. 5 

O’Neill, H. B., and Christiansen, H. H.: Detection of ice wedge cracking in permafrost using miniature accelerometers, 

Journal of Geophysical Research: Earth Surface, 123, doi:10.1002/2017JF004343, 2018. 

Osterkamp, T. E. and Romanovsky, V. E.: Characteristics of Changing Permafrost Temperatures in the Alaskan Arctic, 

U.S.A., Arctic and Alpine Research, 28(3), 267, doi:10.2307/1552105, 1996. 

Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R., Moulton, J. D., Svyatskiy, D. and Wilson, C. J.: 10 

Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations, 

Water Resources Research, doi:10.1002/2015WR018427, 2016. 

Plug, L. and Werner, B.: Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events, 

Nature, 417(6892), 929–933, doi:10.1038/nature00797, 2002. 

Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevskiy, M., Kofinas, G. P., Romanovsky, 15 

V. E., Shur, Y. and Webber, P. J.: Cumulative geoecological effects of 62 years of infrastructure and climate change in 

ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska, Global Change Biology, 20(4), 1211–1224, 

doi:10.1111/gcb.12500, 2014. 

Riche, F. and Schneebeli, M.: Thermal conductivity of snow measured by three independent methods and anisotropy 

considerations, The Cryosphere, 7(1), 217–227, doi:10.5194/tc-7-217-2013, 2013. 20 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, 

J., Bosilovich, M., Entin*, J. K., Walker, J. P., Lohmann, D. and Toll, D.: The Global Land Data Assimilation System, 

Bulletin of the American Meteorological Society, 85(3), 381–394, doi:10.1175/BAMS-85-3-381, 2004. 

Romanovsky, V., Kholodov, A., Cable, W., Cohen, L., Panda, S., Muskett, R., Marchenko, S., Yoshikawa, K., and Nicolsky, 

D.: Network of Permafrost Observatories in North America: Temperature in deep boreholes, Arctic Data Center, 25 

doi:10.18739/A26R78, 2009. 

Root, J. D.: Ice-wedge polygons, Tuktoyaktuk area, N.W.T., Paper, Geological Survey of Canada., 1975. 

Schuh, C., Frampton, A. and Christiansen, H. H.: Soil moisture redistribution and its effect on inter-annual active layer 

temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard, The Cryosphere, 11(1), 635-651, 

doi:10.5194/tc-11-635-2017, 2017. 30 

Sjoberg, Y., Coon, E. T., Sannel, A. B. K., Pannetier, R., Harp, D., Frampton, A., Painter, S. L. and Lyon, S. W.: Thermal 

effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling, 

Water Resources Research, 52(3), 1591-1606, doi:10.1002/2015WR017571, 2016. 



16 

 

Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu, Y., Ulrich, C., Peterson, J. E., Torn, M. S. and 

Hubbard, S. S.: Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on 

carbon fluxes in an Arctic tundra ecosystem, Journal of Geophysical Research: Biogeosciences, 120(4), 788–808, 

doi:10.1002/2014JG002799, 2015. 

Wainwright, H. M., Liljedahl, A. K., Dafflon, B., Ulrich, C., Peterson, J. E., Gusmeroli, A. and Hubbard, S. S.: Mapping 5 

snow depth within a tundra ecosystem using multiscale observations and Bayesian methods, The Cryosphere, 11(2), 

857–875, doi:10.5194/tc-11-857-2017, 2017. 

Walker, D. A., Webber, P. J., Binnian, E. F., Everett, K. R., Lederer, N. D., Nordstrand, E. A. and Walker, M. D.: 

Cumulative impacts of oil fields on northern Alaskan landscapes, Science, 238(4828), 757–761, 1987. 

Walters, J. C.: Ice-wedge casts and relict patterned-ground in northeast Iowa, USA, Permafrost and Periglacial Processes, 10 

5(4), 269–281, 1994. 

Watanabe, T., Matsuoka, N., Christiansen, H. H., and Cable, S.: Soil physical and environmental conditions controlling 

patterned ground variability at a continuous permafrost site, Svalbard, Permafrost and Periglacial Processes, 28, 433-

445, doi:10.1002/ppp.1924, 2017. 

Wind, G. P.: Capillary conductivity data estimated by a simple method, in Water in the unsaturated zone: Proceedings of the 15 

Wageningen Symposium, vol. 1, pp. 181–191, International Association of Scientific Hydrology., 1969. 

Yang, D., Goodison, B. E., Ishida, S. and Benson, C. S.: Adjustment of daily precipitation data at 10 climate stations in 

Alaska: Application of World Meteorological Organization intercomparison results, Water Resources Research, 34(2), 

241–256, 1998. 

Zona, D., Lipson, D. A., Zulueta, R. C., Oberbauer, S. F. and Oechel, W. C.: Microtopographic controls on ecosystem 20 

functioning in the Arctic coastal plain, Journal of Geophysical Research, 116, doi:10.1029/2009JG001241, 2011. 

 

  



17 

 

Table 1: Ground physical (hydraulic and thermal) properties used in model. 

 

Ground 

material 

Porosity 

Residual 

water 

content 

Van 

Genuchten 

parameter 

α 

Van 

Genuchten 

mparamet

er 

Intrinsic 

permeability 

Saturated 

(thawed) thermal 

conductivity 

Saturated 

(frozen) thermal 

conductivity 

Dry thermal 

conductivity 

ϕ θr α m k λ s λ sf λu 

m3 m-3 m3 m-3 cm-1 unitless m2 W m-1 K-1 W m-1 K-1 W m-1 K-1 

Upper peat 0.80 0.08 0.02 0.30 5·10-11 0.6 1.8 0.10 

Lower 

peat 
0.70 0.07 0.02 0.40 2·10-12 0.75 1.9 0.12 

Mineral 

soil 
0.50 0.10 5.4·10-4 0.19 2·10-13 1.0 2.0 0.29 

Ice wedge 0.99 0.00 5.4·10-4 0.19 0.0 0.59 2.2 N/A 
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Table 2: Minimum observed temperature (°C) at each sensor rod and depth (cm)(°C) 

 

Depth cen1 cen2 cen3 cen4 cen5 cen6 rim1 rim2 rim3 
Center 

Median 

Rim 

Median 

1010cm -19.0 -17.7 -16.1 -16.0 -18.0 -19.9 -21.1 -19.8 -22.5 -17.8 -21.1 

2020cm -18.3 -19.1 -15.7 -15.1 -17.2 -19.2 -19.9 -18.4 -20.8 -17.1 -19.7 

3030cm  -17.7 -16.4 -15.3 -14.6 -16.5 -18.3 -19.0 -18.0 -19.7 -16.4 -19.0 

4040cm -16.8 -15.6 -14.3 -14.0 -15.7 -17.6 -18.0 -17.2 -18.7 -15.7 -18.0 

5050cm -16.1 -15.1 -13.8 -13.5 -15.0 -16.4 -17.3 -16.5 -18.0 -15.0 -17.3 
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Table 3: Freezing curtain duration (days) at each sensor rod and depth (days) (cm) 

 

Depth cen1 cen2 cen3 cen4 cen5 cen6 rim1 rim2 rim3 
Center 

Median 

Rim 

Median 

10cm10 37.5 41.6 42.9 38.5 38.5 37.6 29.5 29.6 28.3 38.5 29.5 

20cm20 54.3 57.1 58.0 34.6 49.8 52.8 38.8 41.9 39.5 54.4 39.5 

30cm  59.8 64.1 65.0 62.1 57.1 59.4 52.5 57.0 50.8 60.9 52.5 

40cm 68.6 72.0 74.1 71.5 61.5 64.9 58.4 67.9 58.1 68.6 58.4 

50cm 77.1 77.4 80.8 81.8 68.5 75.6 65.0 68.0 64.1 77.3 65.0 
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Table 4: Rank sum test results (p-values) for two hypotheses 

 

Hypothesis 
Depth (cm) 

10cm 20cm 30cm 40cm 50cm 

Rims with have colder 

minimum temperatures than 

centers. 

0.024 0.024 0.024 0.024 0.012 

Rims with shorter freezing 

curtainshave shorter freezing 

curtains than centers. 

0.012 0.012 0.012 0.024 0.012 
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Table 5. Sensitivity analysis: minimum simulated temperature at top of ice wedge (°C) 

 

Trough 

manipulation 

(cm) 

Rim manipulation (cm) 

rim -10cm-

10 
rim -5cm-5 rim +0cm0 

rim 

+5cm+5 

rim 

+10cm+10 

rim 

+15cm+15 

center -0cm0 -13.94 -14.08 -14.37 -14.56 -14.92 -15.16 

center -10cm-

10 
-13.18 -13.42 -14.07 -14.39 -14.87 -14.98 

center -20cm-

20 
-12.88 -13.33 -13.85 -14.13 -14.57 -15.00 

center -30cm-

30 
-12.99 -13.11 -13.52 -13.99 -14.34 -14.71 

center -40cm-

40 
-12.87 -12.98 -13.38 -13.89 -14.28 -14.57 
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Figure 1. Location of field site (a) and 50 cm resolution lidar DEM of field site.with ice wedge polygon extent and 

temperature sensor rod locations indicated (b). 
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Figure 2. Sample of observed temperature data from sensor rod a101 (polygon center).cen1. 
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Figure 3. Schematic of the near-surface portion of the 2D mesh of the field site (vertical exaggeration=4). Mesh 

extends to 50 m below the ground surface. 
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Figure 4. Schematic illustrating the range of topographic conditions explored in the sensitivity analysis (vertical 

exaggeration=6) 
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Figure 5. Results of the rank sum test, evaluating whether mean monthly temperatures are colder in the rims than in 

the centers. 
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Figure 6. Observed and simulated ground temperature from calibrated 2D simulation, at temperature sensor rods  cen1 

and rim1. 
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Figure 7. Snapshot of simulated snowpack surface (cyan line) and ground temperature on December 24, 2014 (vertical 

exaggeration=4). Only near -surface is shown; spatial domain of simulation extends to 50 m below the ground surface. 5 
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Figure S1. Observed temperature at each sensor rod. Left column shows polygon centers, 
and right column shows rims.  

 
 



Text S1. Description of model calibration 
 
 In the first iteration of model construction and calibration, we conducted simulations 
using a one-dimensional domain, to speed up computational times while coarse tuning the 
model. The 1D domain preserved the same layering as the 2D mesh but did not include ice 
wedge cells. The domain was 50 m deep, and the same boundary conditions were applied as in 
the 2D simulations.  

The sole parameter tuned during 1D simulations was a snowfall multiplication factor. It is 
well-known that records of snowfall frequently underestimate the real precipitation rate. A study 
of 10 National Weather Service stations in Alaska, for example, found snowfall estimates were 
systematically underestimated by as much as 140% (Yang et al., 1998), and Atchley et al. 
(2015) found it necessary to augment snowfall rates observed at a weather station near Barrow, 
AK ~40% to reproduce the active layer thermal regime in 1D thermal hydrology simulations. Our 
meteorological data was sourced from the output of the Noah Land Surface Model associated 
with NASA’s Global Land Data Assimilation System (GLDAS), which is influenced by local 
ground-based measurements (Rodell et al., 2004).To compensate for potential underestimation 
of snowfall in our meteorological data, we ran a set of simulations in which GLDAS snowfall was 
increased by factors of 0-100% in increments of 10%. Following each simulation, we extracted 
temperatures at depths of 10, 20, 30, 40, and 50 cm for comparison with observational data 
from rod a101cen1, which was intermediate in elevation among the sensor rods. The best 
performing multiplication factor was 1.8, which we interpreted as providing a rough estimate of 
the true snowfall rate.  
 In the second stage of model calibration we expanded into 2D simulations. During this 
stage, two additional snowpack parameters were tuned heuristically. The first, snow thermal 
conductivity, is represented in the Advanced Terrestrial Simulator  (ATS) (Atchley et al., 2015; 
Painter et al., 2016) as an empirical function of snow density (which increases with age) 
(Goodrich, 1982). By default, ATS assigns fresh snow a density of 100 kg m-3 and a thermal 
conductivity of 0.029 W m-1 K-1. We explored values between half and double the default 
thermal conductivity, in accordance with recent measurements by Domine et al. (2016) and 
Riche and Scheebeli (2013). The second parameter we tuned was the diffusion-like coefficient 
used by ATS to redistribute snow across topography. We explored values within an order of 
magnitude in either direction of its default, effectively altering the speed with which the 
snowpack develops a level surface during the course of winter. In addition to these two 
parameters, we explored values of the snowfall augmentation factor within ±20% of the coarse-
tuned estimate from the 1D simulations. Following every 2D run, we extracted simulated 
temperature from 2014-2015 for comparison with observations at the five rods intersecting the 
transect, then made a decision in which direction to tune each parameter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Text S2. Estimation of soil physical parameters from core samples 
 
 The water retention curve in ATS is parameterized using the Van Genuchten model. 
Necessary parameters include saturated volumetric water content (θs, m3 m-3), residual water 
content (θr, m3 m-3), inverse air entry potential (α, cm-1), and the shape parameter, m (unitless). 
We estimated the Van Genuchten parameters for each soil core using a HYPROP system 
(METER Group, Pullman, Washington, USA), which employs the Wind evaporation method 
(Wind, 1968) to estimate unsaturated hydraulic properties while an initially saturated soil sample 
is left to dry. Soil cores had been collected in steel rings, five centimeters tall and eight 
centimeters in diameter. The HYPROP system includes two tensiometers, inserted at depths of 
1.25cm and 3.75cm, which record water potential as the core is allowed to evaporate through its 
top face. The mass flux of water leaving the core is monitored by conducting the experiment on 
top of a balance. After the tensiometers cavitate, software provided by the manufacturer fits an 
inverse model based on the Richards Equation to the time series data of tension and 
evaporative flux. To provide additional data points for the parameter estimation algorithm, we 
also estimated soil water potential in air-dry subsamples from each core using a WP4 Dewpoint 
Potentiometer (METER Group), which infers soil water potential by measuring the relative 
humidity of air in equilibrium with a sample. 
 Soil thermal properties used as input by ATS include thermal conductivity of saturated, 
thawed soil (λs, W m-1 K-1), and thermal conductivity of dry soil material (λu, W m-1 K-1). The 
thermal conductivity of soil at intermediate states of liquid or ice saturation is derived from these 
values and from the water retention curve, using equations described in Atchley et al. (2015). 
We estimated soil thermal conductivity using a KD2 Pro dual-needle heat pulse probe (METER 
Group), which was inserted into the top of the soil core during the evaporation experiments 
described in the previous paragraph. The KD2 estimates soil thermal properties at a depth of 
1.25 cm below the surface, the same depth as the upper tensiometer of the HYPROP. We 
programmed the KD2 to estimate thermal properties every thirty minutes while the core 
evaporated, and used the record of tension from the upper tensiometer to match the time series 
of thermal conductivity estimates with volumetric wetness values. Following cavitation, we 
extrapolated these data points to 0% volumetric water content, to estimate the thermal 
conductivity of dry soil material. 
 Hydraulic and thermal properties from each core, estimated through these procedures, 
are presented in Table S1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Table S1. Estimated soil hydraulic and thermal properties from field samples 
 
 

Location 

Depth 
Saturated 

water 
content 

Residual 
water 

content 

Van 
Genuchten 
parameter 

Van 
Genuchten 
parameter 

Saturated 
(thawed) 
thermal 

conductivity 

Dry thermal 
conductivity 

Ground 
material  θs θr α m λs λu 

Depth (cm) 
θs 

(m3 m-3) 

θr 

(m3 m-3) 

α 

(cm-1) 

m 

(unitless) 

λs 

(W m-1 K-1) 

λu 

(W m-1 K-1) 

Center 0 0.75 0.08 0.02 0.41 0.68 0.1 Upper  
peat 

Center 12 0.62 0.06 0.02 0.49 1.34 0.2 Lower  
peat 

Rim 0 0.74 0.00 0.04 0.26 0.68 0.12 Upper  
peat 

Rim 8 0.68 0.02 0.02 0.33 0.84 0.15 Lower  
peat 

Rim 19 0.76 0.03 0.02 0.32 0.79 0.15 Lower  
peat 

Rim-Center 
boundary 0 0.66 0.00 0.09 0.32 0.52 0.15 Upper  

peat 

Rim-Center 
boundary 12 0.65 0.04 0.02 0.41 0.64 0.12 Lower  

peat 

Rim-Center 
boundary 19 0.66 0.07 0.02 0.46 0.94 0.2 Lower  

peat 
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