Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-755-2017
https://doi.org/10.5194/tc-11-755-2017
Research article
 | 
23 Mar 2017
Research article |  | 23 Mar 2017

Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland

Related authors

Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band
Ane S. Fors, Camilla Brekke, Anthony P. Doulgeris, Torbjørn Eltoft, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 10, 401–415, https://doi.org/10.5194/tc-10-401-2016,https://doi.org/10.5194/tc-10-401-2016, 2016
Short summary

Related subject area

Remote Sensing
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary
Temporal stability of a new 40-year daily AVHRR land surface temperature dataset for the pan-Arctic region
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
The Cryosphere, 18, 6027–6059, https://doi.org/10.5194/tc-18-6027-2024,https://doi.org/10.5194/tc-18-6027-2024, 2024
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary

Cited articles

Airbus Defence and Space: Basic product specifications, 2013.
Barber, D. G., Yackel, J. J., and Hanesiak, J.: Sea Ice, RADARSAT-1 and Arctic Climate Processes: A Review and Update, Can. J. Remote Sens., 27, 51–61, 2001.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244, https://doi.org/10.3189/2015AoG69A717, 2015.
Cloude, S. R.: The dual polarisation entropy/alpha decomposition: A PALSAR case study, in: Proc. POLinSAR 2007, 22–26 Januar 2007, European Space Agency (ESA SP-644), Frascati, Italy, 2007.
Cloude, S. R. and Pottier, E.: An entropy based classification scheme for land applications of polarimetric SAR, IEEE T. Geosci. Remote, 35, 68–78, https://doi.org/10.1109/36.551935, 1997.
Download
Short summary
This paper investigates the signature of melt ponds in satellite-borne synthetic aperture radar (SAR) imagery. A comparison between helicopter-borne images of drifting first-year ice and polarimetric X-band SAR images shows relations between observed melt pond fraction and several polarimetric SAR features. Melt ponds strongly influence the Arctic sea ice energy budget, and the results imply prospective opportunities for expanded monitoring of melt ponds from space.