Articles | Volume 11, issue 2
Research article
23 Mar 2017
Research article |  | 23 Mar 2017

Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland

Related authors

Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band
Ane S. Fors, Camilla Brekke, Anthony P. Doulgeris, Torbjørn Eltoft, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 10, 401–415,,, 2016
Short summary

Related subject area

Remote Sensing
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632,,, 2024
Short summary
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578,,, 2024
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285,,, 2024
Short summary
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773,,, 2024
Short summary
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746,,, 2024
Short summary

Cited articles

Airbus Defence and Space: Basic product specifications, 2013.
Barber, D. G., Yackel, J. J., and Hanesiak, J.: Sea Ice, RADARSAT-1 and Arctic Climate Processes: A Review and Update, Can. J. Remote Sens., 27, 51–61, 2001.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244,, 2015.
Cloude, S. R.: The dual polarisation entropy/alpha decomposition: A PALSAR case study, in: Proc. POLinSAR 2007, 22–26 Januar 2007, European Space Agency (ESA SP-644), Frascati, Italy, 2007.
Cloude, S. R. and Pottier, E.: An entropy based classification scheme for land applications of polarimetric SAR, IEEE T. Geosci. Remote, 35, 68–78,, 1997.
Short summary
This paper investigates the signature of melt ponds in satellite-borne synthetic aperture radar (SAR) imagery. A comparison between helicopter-borne images of drifting first-year ice and polarimetric X-band SAR images shows relations between observed melt pond fraction and several polarimetric SAR features. Melt ponds strongly influence the Arctic sea ice energy budget, and the results imply prospective opportunities for expanded monitoring of melt ponds from space.