Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-755-2017
https://doi.org/10.5194/tc-11-755-2017
Research article
 | 
23 Mar 2017
Research article |  | 23 Mar 2017

Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland

Related authors

Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band
Ane S. Fors, Camilla Brekke, Anthony P. Doulgeris, Torbjørn Eltoft, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 10, 401–415, https://doi.org/10.5194/tc-10-401-2016,https://doi.org/10.5194/tc-10-401-2016, 2016
Short summary

Related subject area

Remote Sensing
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025,https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary

Cited articles

Airbus Defence and Space: Basic product specifications, 2013.
Barber, D. G., Yackel, J. J., and Hanesiak, J.: Sea Ice, RADARSAT-1 and Arctic Climate Processes: A Review and Update, Can. J. Remote Sens., 27, 51–61, 2001.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244, https://doi.org/10.3189/2015AoG69A717, 2015.
Cloude, S. R.: The dual polarisation entropy/alpha decomposition: A PALSAR case study, in: Proc. POLinSAR 2007, 22–26 Januar 2007, European Space Agency (ESA SP-644), Frascati, Italy, 2007.
Cloude, S. R. and Pottier, E.: An entropy based classification scheme for land applications of polarimetric SAR, IEEE T. Geosci. Remote, 35, 68–78, https://doi.org/10.1109/36.551935, 1997.
Download
Short summary
This paper investigates the signature of melt ponds in satellite-borne synthetic aperture radar (SAR) imagery. A comparison between helicopter-borne images of drifting first-year ice and polarimetric X-band SAR images shows relations between observed melt pond fraction and several polarimetric SAR features. Melt ponds strongly influence the Arctic sea ice energy budget, and the results imply prospective opportunities for expanded monitoring of melt ponds from space.
Share