Articles | Volume 11, issue 4
The Cryosphere, 11, 1987–2002, 2017
https://doi.org/10.5194/tc-11-1987-2017
The Cryosphere, 11, 1987–2002, 2017
https://doi.org/10.5194/tc-11-1987-2017
Research article
30 Aug 2017
Research article | 30 Aug 2017

New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator

Carolina Gabarro et al.

Related authors

Assimilation of sea surface salinities from SMOS in an Arctic coupled ocean and sea ice reanalysis
Jiping Xie, Roshin P. Raj, Laurent Bertino, Justino Martínez, Carolina Gabarró, and Rafael Catany
EGUsphere, https://doi.org/10.5194/egusphere-2022-660,https://doi.org/10.5194/egusphere-2022-660, 2022
Short summary
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022,https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Improved BEC SMOS Arctic Sea Surface Salinity product v3.1
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 307–323, https://doi.org/10.5194/essd-14-307-2022,https://doi.org/10.5194/essd-14-307-2022, 2022
Short summary
Nine years of SMOS sea surface salinity global maps at the Barcelona Expert Center
Estrella Olmedo, Cristina González-Haro, Nina Hoareau, Marta Umbert, Verónica González-Gambau, Justino Martínez, Carolina Gabarró, and Antonio Turiel
Earth Syst. Sci. Data, 13, 857–888, https://doi.org/10.5194/essd-13-857-2021,https://doi.org/10.5194/essd-13-857-2021, 2021
Short summary
Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019,https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary

Related subject area

Remote Sensing
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022,https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Offset of MODIS land surface temperatures from in situ air temperatures in the upper Kaskawulsh Glacier region (St. Elias Mountains) indicates near-surface temperature inversions
Ingalise Kindstedt, Kristin M. Schild, Dominic Winski, Karl Kreutz, Luke Copland, Seth Campbell, and Erin McConnell
The Cryosphere, 16, 3051–3070, https://doi.org/10.5194/tc-16-3051-2022,https://doi.org/10.5194/tc-16-3051-2022, 2022
Short summary
Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022,https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022,https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
Thomas R. Chudley, Ian M. Howat, Bidhyananda Yadav, and Myoung-Jong Noh
The Cryosphere, 16, 2629–2642, https://doi.org/10.5194/tc-16-2629-2022,https://doi.org/10.5194/tc-16-2629-2022, 2022
Short summary

Cited articles

AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, SWIPA 2011 Overview Report, Arctic Monitoring and Assessment Programme (AMAP), Oslo, xi + 97 pp., 2012.
Becker, F. and Choudhury, B. J.: Relative Sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for Vegetation and Desertification Monitoring, Remote Sens. Environ., 24, 297–311, https://doi.org/10.1016/0034-4257(88)90031-4, 1988.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, California, USA, 2002.
Burke, W., Schmugge, T., and Paris, J.: Comparison of 2.8- and 21-cm Microwave Radiometer Observations Over Soils With Emission Model Calculations, J. Geophys. Res., 84, 287–294, https://doi.org/10.1029/JC084iC01p00287, 1979.
Camps, A., Vall-llossera, M., Duffo, N., Torres, F., and Corbella, I.: Performance of Sea Surface Salinity and Soil Moisture Retrieval Algorithms with Different Ancillary Data Sets in 2D L-band Aperture Synthesis Interferometic Radiometers, IEEE T. Geosci. Remote, 43, 1189–1200, https://doi.org/10.1109/TGRS.2004.842096, 2005.
Download
Short summary
We present a new method to estimate sea ice concentration in the Arctic Ocean using different brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) satellite. The method employs a maximum-likelihood estimator. Observations at L-band frequencies such as those from SMOS (i.e. 1.4 GHz) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency and little affected by physical temperature changes.