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Abstract. Monitoring sea ice concentration is required for
operational and climate studies in the Arctic Sea. Technolo-
gies used so far for estimating sea ice concentration have
some limitations, for instance the impact of the atmosphere,
the physical temperature of ice, and the presence of snow and
melting. In the last years, L-band radiometry has been suc-
cessfully used to study some properties of sea ice, remark-
ably sea ice thickness. However, the potential of satellite L-
band observations for obtaining sea ice concentration had not
yet been explored.

In this paper, we present preliminary evidence showing
that data from the Soil Moisture Ocean Salinity (SMOS)
mission can be used to estimate sea ice concentration. Our
method, based on a maximum-likelihood estimator (MLE),
exploits the marked difference in the radiative properties of
sea ice and seawater. In addition, the brightness temperatures
of 100 % sea ice and 100 % seawater, as well as their com-
bined values (polarization and angular difference), have been
shown to be very stable during winter and spring, so they are
robust to variations in physical temperature and other geo-
physical parameters. Therefore, we can use just two sets of
tie points, one for summer and another for winter, for cal-
culating sea ice concentration, leading to a more robust esti-
mate.

After analysing the full year 2014 in the entire Arctic, we
have found that the sea ice concentration obtained with our
method is well determined as compared to the Ocean and Sea
Ice Satellite Application Facility (OSI SAF) dataset. How-
ever, when thin sea ice is present (ice thickness . 0.6 m), the
method underestimates the actual sea ice concentration.

Our results open the way for a systematic exploitation of
SMOS data for monitoring sea ice concentration, at least for
specific seasons. Additionally, SMOS data can be synergisti-
cally combined with data from other sensors to monitor pan-
Arctic sea ice conditions.

1 Introduction

The Arctic Ocean is undergoing profound transformation.
The rapid decline in Arctic sea ice extent and volume
that is both observed and modelled (e.g. Comiso, 2012;
Stroeve et al., 2012) may have become the key illustration
of change in a warming planet, but change is widespread
across the whole Arctic system (e.g. AMAP, 2012; IPCC,
2013; SEARCH, 2013). A retreating Arctic sea ice cover has
a marked impact on regional and global climate, and vice
versa, through a large number of feedback mechanisms and
interactions with the climate system (e.g. Holland and Bitz,
2003; Cohen et al., 2014; Vihma, 2014).

The launch of the Soil Moisture and Ocean Salinity
(SMOS) satellite, in 2009, marked the dawn of a new type
of space-based microwave imaging sensor. Originally con-
ceived to map geophysical parameters of both hydrological
and oceanographic interest (e.g. Martin-Neira et al., 2002;
Mecklenburg et al., 2009), SMOS is also making serious in-
roads in the cryospheric sciences (e.g. Kaleschke et al., 2010,
2012; Huntemann et al., 2014). Developed by the European
Space Agency (ESA), the SMOS’s single payload, called Mi-
crowave Imaging Radiometer using Aperture Synthesis (MI-
RAS), is an L-band (1.4 GHz, or 21 cm wavelength) passive
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interferometric radiometer that measures the electromagnetic
radiation emitted by Earth’s surface. The observed brightness
temperature (TB) can be related to moisture content over the
soil and to salinity over the ocean surface (Kerr et al., 2010;
Font et al., 2013), which can be used to infer sea ice thickness
(Kaleschke et al., 2012) and snow thickness (Maaß, 2013;
Maaß et al., 2015).

Sea ice concentration (SIC), defined as the fraction of ice
relative to the total area at a given ocean location, is often
used to determine other important climate variables such as
ice extent and ice volume. SIC has been the target of satellite-
based passive microwave sensors such as the Special Sensor
Microwave/Imager (SSM/I and SSMIS) and the Advanced
Microwave Scanning Radiometer (AMSR-E and AMSR-2)
for more than 30 years. SIC can be estimated due to the fact
that the brightness temperature of sea ice and seawater are
quite distinct. There exist a variety of algorithms with which
to retrieve SIC from TB observations tuned to those higher-
frequency sensors, that is, frequencies between 6 and 89 GHz
(e.g. Cavalieri et al., 1984; Comiso, 1986; Ramseier, 1991;
Smith, 1996; Markus and Cavalieri, 2000; Kaleschke et al.,
2001; Shokr et al., 2008). Those algorithms present different
advantages and drawbacks depending on frequency, spatial
resolution, atmospheric effects, physical temperature, and
others. According to Ivanova et al. (2015), the first source of
error in the computation of sea ice concentration is the sensi-
tivity to changes in the physical temperature of sea ice, in par-
ticular for those algorithms that use measurements between
10 and 37 GHz. They identify atmospheric water vapour and
cloud liquid water as the second source of error except for
algorithms at 89 GHz, where it becomes the dominant error.
Another problem faced by higher-frequency radiometers is
that the SIC retrievals are affected by the thickness of snow
cover, which is difficult to determine.

Wilheit (1978) analysed the sensitivity of microwave
emissivity of open seawater to a variety of geophysical vari-
ables such as atmospheric water vapour, sea surface temper-
ature, wind speed, and salinity as a function of frequency
(Fig. 1). The figure illustrates that L-band (1–2 GHz) obser-
vations are in a sweet spot, with the effect of all variables
but salinity being minimal around the SMOS frequency. The
same author also showed that the signature of multi-year
(MY) and first-year (FY) ice overlap in the lower microwave
frequencies, while this is not the case at higher frequencies.

Although some authors (e.g. Mills and Heygster, 2011a;
Kaleschke et al., 2013) have recently explored the feasibility
of SIC determination using an aircraft-mounted L-band ra-
diometer, a method that extends satellite-based SIC retrievals
down to L-band (i.e. SMOS) frequencies has been missing.
We therefore set out to develop a new method, which we
present here.

A significant difference between high-frequency and L-
band microwave radiometry is that ice penetration at the L
band is non-negligible (Heygster et al., 2014). In other words,
ice is more transparent (i.e. optically thinner) at low than at

Figure 1. Sensitivity of brightness temperature for open seawater
over a range of observing frequencies in the microwave band for a
set of key geophysical parameters (created after Wilheit, 1978, and
Ulaby and Long, 2014).

high microwave frequencies. As a consequence, the bright-
ness temperature measured by an L-band antenna is emit-
ted not only by the topmost ice surface layer but also by a
larger range of deeper layers within the ice. Thanks to that
increased penetration in sea ice (about 60 cm depending on
ice conditions), the SMOS L-band radiometer is also sen-
sitive to ice thickness (Kaleschke et al., 2012; Huntemann
et al., 2014).

We exploit some of the SMOS observational features in
this study to develop a new method to estimate SIC. These in-
clude a combination of acquisition modes involving dual and
full polarization; continuous multiangle viewing between
nadir and 65◦; a wide swath of about 1200 km; spatial res-
olution of 35–50 km; and 3-day revisit time at the Equator
or, more frequently, at the poles. In particular, the multian-
gle viewing capability of SMOS is a noteworthy feature; it
means that the same location on the Earth’s surface can be
observed quasi-simultaneously from a continuous range of
angles of incidence as the satellite overpasses it.

The new method we present in this paper uses SMOS
brightness temperature observations TB and a maximum-
likelihood estimator (MLE) to obtain SIC maps in the Arc-
tic Ocean. We describe SMOS data and a radiative transfer
model for sea ice that allows us to compute its emissivity in
Sects. 2 and 3, respectively. We then introduce the concept
of tie points and their sensitivity to different geophysical pa-
rameters to help with SIC retrievals via algorithmic inversion
of SMOS data in Sects. 4.1, 4.2, 4.3, and 4.4, and the MLE
inversion algorithm in Sect. 4.5. We then perform an accu-
racy assessment of SIC estimates using SMOS by compar-
ing them to an independent SIC dataset in Sect. 5 and with a
discussion and conclusions in Sects. 6 and 7, respectively.
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2 Data

2.1 SMOS data from the Arctic Ocean

Since the launch of SMOS in 2009, ESA has been generating
brightness temperature full-polarization data products from
it. In this study, we focus on the official SMOS Level 1B
(L1B) product version 504 data north of 60◦ N from 2014
to estimate SIC. The L1B data contain the Fourier compo-
nents of TB at the antenna reference frame (Deimos, 2010),
from which one can obtain temporal snapshots of the spatial
distribution of TB (i.e. an interferometric TB image) by per-
forming an inverse Fourier transform. The TB data are geo-
referenced at an Equal-Area Scalable Earth (EASE) Northern
Hemisphere grid (Brodzik and Knowles, 2002) of 25 km on
the side. The radiometric accuracy of individual TB observa-
tions from SMOS is ∼ 2 K at boresight, and it increases on
the extended alias-free field of view (Corbella et al., 2011).
Proceeding from L1B data, though computationally more de-
manding than the more traditional L1C data products, has
several benefits. For example, it allows one to change the an-
tenna grid from the operational size of 128× 128 pixels to
64×64 pixels. As shown by Talone et al. (2015), the smaller
grid is optimal in that it helps mitigate some of the spatial
correlations between measurements that are present in the
larger grid.

We correct TB for a number of standard contributions such
as geomagnetic and ionospheric rotation and atmospheric at-
tenuation (Zine et al., 2008). The galactic reflection is not
significant at high latitudes, and no correction was applied.
We then filter out outliers (defined as those estimates that de-
viate by more than 3σ from the mean value, where σ is the
radiometric accuracy at the given point in the antenna plane).
We also filter out TB observations in regions of the field of
view that are known to have low accuracy due to aliasing
(Camps et al., 2005), Sun reflections, and Sun tails.

To lower the noise level, we averaged TB measurements
from both ascending and descending orbits over periods of
3 days, which thus define the time resolution of our SIC
maps. We also averaged acquisitions in incidence angle bin-
nings of 2◦. Since some incidence angles could be missing
due to the SMOS acquisition feature and interferences, we
use a cubic polynomial fit to interpolate TB measurements to
have the full range of incidence angles in each grid position.

2.2 OSI SAF and other sea ice data products

We use SIC maps from the database of the Ocean and Sea
Ice Satellite Application Facility (OSI SAF product version
OSI-401a) of the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT) for comparison
with the products we are obtaining.

These are computed from brightness temperature observa-
tions from SSMIS at 19 and 37 GHz, are corrected for atmo-
spheric effects using forecasts from the European Centre for

Medium-Range Weather Forecasts (ECMWF), use monthly
dynamic tie points, are available on a polar stereographic
10 km grid for both polar hemispheres, and include SIC un-
certainty estimates (Tonboe et al., 2016). In this study, we
used daily SIC maps in the Arctic Ocean from the OSI SAF
Northern Hemisphere products of the year 2014.

We also used SIC estimates from ice charts generated
from various sensors by the National Ice Center (Fetterer and
Fowler, 2009) to identify regions of interests to compute the
100 % ice tie points.

3 Theoretical model of sea ice radiation at microwave
wavelengths

Passive radiometers measure brightness temperature TB at
the antenna frame with different incidence angle. TB can be
expressed as

TB = ϒ
[
TBSURF + TBATM_DN

]
+ TBATM_UP , (1)

where ϒ is the atmosphere transmissivity, TBSURF the radia-
tion emitted by the surface, TBATM_DN the downward-emitted
atmospheric radiation that gets scattered by the terrain in the
direction of the antenna, and TBATM_UP the upward-emitted at-
mospheric radiation.

The surface emission is defined as

TBSURF(θ)= es(θ)T , (2)

where θ is the incidence angle relative to zenith angle, es
the surface emissivity, and T the physical temperature of the
radiation-emitting body layer. Hereafter, we will use TB to
refer to surface brightness temperature, for simplicity.

The emissivity e and reflectivity 0 of a layer are related
by e = (1−0). The reflectivity (sometimes also called R) is
the ratio between reflected and incident radiation at the me-
dia boundaries for each polarization. 0 for horizontal H and
vertical V polarizations can be calculated using Fresnel equa-
tions, which depend non-linearly on the dielectric constant
(ε) and on the incident θi and refracted θt angles:

0H(θ)=

∣∣∣∣√ε1 cosθi−
√
ε2 cosθt

√
ε1 cosθi+

√
ε2 cosθt

∣∣∣∣2,
0V(θ)=

∣∣∣∣√ε2 cosθi−
√
ε1 cosθt

√
ε1 cosθt+

√
ε2 cosθi

∣∣∣∣2. (3)

The frequency-dependent dielectric constant of a medium
is a complex number defined as ε(f )= ε′(f )+ iε′′(f ),
where the real part ε′ is related to the electromagnetic en-
ergy that can be stored in the medium, the imaginary part ε′′

is related to the energy dissipated within the medium, and f
is frequency. Note that brightness temperature varies linearly
with emissivity (Eq. 2) and hence also with reflectivity.

To calculate the brightness temperature TB of sea ice, we
will assume a sea ice model consisting of horizontal layers of
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three media – air, snow, and thick ice. We use the incoherent
approach (i.e. conservation of energy, instead of wave field
treatment in the coherent approach). Then a plane-parallel
radiative transfer model (Eq. 4) is used to propagate to the
surface the reflectivity computed at and through the ice–snow
and snow–air media boundaries, making a number of simpli-
fying assumptions. Specifically, our model assumes (a) that
the media are isothermal and (b) that the thickness of the
ice layer is semi-infinite so that radiation from an underly-
ing fourth layer (i.e. seawater) does not need to be consid-
ered. This approach is similar to that used by other authors
(e.g. Mills and Heygster, 2011b; Maaß, 2013; Schwank et al.,
2015). These assumptions are realistic for the emission of
sea ice that is thicker than about 60 cm at the observing fre-
quency of SMOS, as discussed in Sect. 1, since the underly-
ing seawater then makes no contribution to the overall emis-
sivity.

To further simplify our approach, we assume that the snow
layer in the model consists of dry snow, which is typical of
winter Arctic conditions. Dry snow can be considered a loss-
less medium at 1.4 GHz, due to the fact that the imaginary
part of ε is very small compared with the real part, as stated
in Schwank et al. (2015). That means that there is no atten-
uation in the snow layer, and therefore its attenuation coef-
ficient, αsnow, is considered zero. We make this simplifying
assumption because water in a wet snow layer would cause
attenuation and therefore increase the total emissivity, but it
is rarely possible to obtain meaningful data on the amount
of water in wet snow. However, dry snow still has an effect
on the refracted angle according to Snell’s law, and hence
on the emissivity, which is computed via Eq. (3). The per-
mittivity of dry snow depends on snow density (Tiuri et al.,
1984; Matzler, 1996), which depends on the snow temper-
ature. For a snow density of ρs = 300 gcm−3, the dry-snow
permittivity at the L band is εsnow = 1.53 following the equa-
tion described in Schwank et al. (2015).

We can now define the simplified brightness temperature
that results from an infinite number of reflections between
the three medias as (Ulaby et al., 1986)

TB(θ,p,f )=

(
1−0as

1−0as0siexp−2τ

)
·
[(

1+0siexp−τ
)(

1− exp−τ
)
Tsnow

+(1−0si)exp−τTice
]
+ Tsky0as, (4)

where 0as and 0si are the reflectivity at the air–snow and
snow–ice boundaries, respectively, and Tsnow and Tice are
the physical temperature in the snow and ice layers, respec-
tively. The term τ is the attenuation factor and is defined as
τ = 2dα secθ , where d is the depth of the snow layer and α
the attenuation constant. Tsky is the temperature of the cos-
mic background. The dependence of TB on θ , p, and f is
embedded in the expressions of 0 and τ .

The attenuation constant α of the middle layer, in the case
of a low-loss medium (ε′′/ε′� 1), can be expressed as

α =
πf

c

ε′′
√
ε′
, (5)

where c is the speed of light. The skin depth is defined as
δs = 1/α (m) and characterizes how deep an electromagnetic
wave can penetrate into a medium (e.g. Ulaby and Long,
2014).

To compute the complex dielectric constant of sea ice εice,
which is needed to compute 0si, we use the classic empirical
relationship by Vant et al. (1978). In this model, permittivity
depends linearly on the ice brine volume Vb as

ε̂ice = a1+ a2Vbr+ i (a3+ a4Vbr) , (6)

where Vbr = 10Vb, and the coefficients ai can be obtained by
linear interpolation to 1.4 GHz of the laboratory values from
microwave measurements at 1 and 2 GHz (refer to Vant et al.,
1978, for coefficient values).

The sea ice brine volume Vb can be computed using Cox
and Weeks (1983) as follows:

Vb =
ρS

F1(T )− ρSF2(T )
, (7)

where ρ, S, and T are sea ice density, salinity, and temper-
ature, respectively. The F functions are cubic polynomials
derived empirically, namely

Fj (T )=

3∑
i=0

aijT
i, (8)

where the values of the coefficient aij were given in Lep-
päranta and Manninen (1998) for ice temperatures between
−2 and 0 ◦C, and for lower temperatures in Cox and Weeks
(1983); see also Thomas and Dieckmann (2003).

Figure 2 shows the dependence of brightness temperature
at the L band with angle of incidence for seawater and sea ice,
as well as that of ice overlaid by a dry snow layer (following
Eq. 4), for nominal Arctic temperature and salinity values.
Specifically, temperature and salinity values used were after
Maaß (2013): for seawater −1.8 ◦C and 30 gkg−1, respec-
tively, and for sea ice −10 ◦C and 8 gkg−1. Note that the TB
of seawater is significantly less than that of ice, and that the
latter is slightly less than that of snow over ice. Also note the
non-linear dependence of TB on incidence angle, the differ-
ence between H- and V-polarized waves for all three cases,
and the larger variation with incidence angle of H than V over
ice and snow (e.g. Maaß et al., 2015).

We also calculate the theoretical emissivity es of a four-
layer model using the Burke et al. (1979) equation. The ad-
ditional layer in this model is the seawater under sea ice, and
we use the dielectric constant of seawater from Klein and
Swift (1977). This layer does not need to be considered for
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Figure 2. Theoretical variation of brightness temperature with an-
gle of incidence at the L band for (blue) seawater, (black) sea ice,
and (red) a snow layer overlying a sea ice layer for (continuous)
horizontal and (dashed) vertical polarizations.

the case of (optically) thick ice, but it becomes “visible” for
the case of (optically) thin ice (i.e. thicknesses ≤ 60 cm, de-
pending on ice temperature and salinity). The expression of
TB for a four-layer model is defined in Burke et al. (1979) as

TB(θ,p)=

3∑
i=1

Ti

·

(
1− e(−γi (θ)1zi )

)
·

(
1+0p,i+1(θ)e

(−γi (θ)1zi )
)

·

i∏
j=1

[
1−0p,i+1(θ)

]
· e
(−
∑i
j=2γj−1(θ)1zj−1), (9)

where Ti is the temperature of each layer, 0 its reflectivity,
γ the absorption coefficient, and 1z the layer thickness. The
net effect of reducing the sea ice thickness and starting to
sense seawater is a decrease in surface emissivity, and hence
of TB (as illustrated in Fig. 5), relative to emissivity of thick
ice (Shokr and Sinha, 2015).

4 Methods

4.1 Definition of robust indices from brightness
temperature

It is rarely possible to obtain the ancillary geophysical
data such as sea ice temperature, salinity, and ice thickness
that are required to estimate brightness temperature from a
microwave-emission model. Therefore, making assumptions
and approximations becomes critically important. It is possi-
ble, however, to define a number of indices resulting from a
combination of brightness temperature observations that are
less sensitive to the unknown physical parameters. For exam-
ple, estimates of soil moisture or sea ice concentration from
radiometric measurements are often derived by combining

Figure 3. Modelled variation of polarization difference (PD) index
with angle of incidence for (blue) seawater, (black) sea ice, and (red)
a snow layer overlying a sea ice layer at the L band. The vertical line
at 50◦ incidence angle is drawn for reference to tie points, which are
marked with a solid circle for the three media.

TB measurements obtained from different polarizations, fre-
quencies, and angles of incidence (Becker and Choudhury,
1988; Owe et al., 2001).

Hereafter, we use two indices, the polarization difference
(PD) index and the angular difference (AD) index. The PD
index is defined as the difference between TB measurements
obtained at vertical TBV and horizontal TBH polarizations as

PD(θ)= TBV(θ)− TBH(θ). (10)

The AD index is defined as the difference between two
vertical polarization TB measurements obtained at two dif-
ferent angles of incidence as

AD(θ)= TBV (θ +1θ)− TBV(θ). (11)

Figures 3 and 4 show the variation of PD and AD for
the thick-ice model with angle of incidence, respectively. In
defining AD, we use vertical rather than horizontal polariza-
tion because identification of the three media is facilitated
by the larger dynamic range and non-crossing signatures of
vertical polarization (Fig. 4). We choose1θ = 35◦ angle dif-
ference because this value represents a good compromise be-
tween sensitivity of the index and radiometric accuracy in the
case of SMOS (Camps et al., 2005) and, importantly, is also
well supported by the wide range of satellite viewing angles
that characterizes SMOS.

Although the polarization ratio (PR) is also a commonly
used index, we have chosen PD after verifying that its dy-
namic range is larger than that of PR and suspecting that PD
would yield higher-accuracy estimates given the SMOS error
budget.

4.2 Calibration of sea ice concentration using tie points

Tie points are widely used for retrieving SIC with higher-
frequency radiometers, as well as in other fields such as pho-
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Table 1. Modelled (with and without snow) and SMOS-observed TB, PD, and AD median values. Errors quoted are the standard deviation
around the median.

Index Modelled Observed all year
used (K) median ±σ (K)

TB 95.2 99.33± 2.40
0 % SIC (seawater) PD 62.9 62.56± 2.56

AD 51.8 43.08± 2.57

Modelled with Modelled without Observed winter Observed summer
snow (K) snow (K) median ±σ (K) median ±σ (K)

TB 249.2 239.3 248.21± 1.56 229.04± 4.99
100 % SIC (sea ice) PD 26.8 45.9 20.30± 1.75 25.53± 3.72

AD 8.6 18.8 10.38± 1.17 15.26± 2.31

Figure 4. Modelled variation of angular difference (AD) index with
angle of incidence for (blue) seawater, (black) sea ice, and (red) a
snow layer overlying a sea ice layer for (continuous) horizontal and
(dashed) vertical polarizations, and for 1θ = 35◦, at the L band.
The vertical line at 25◦ incidence angle is drawn for reference to tie
points, which are marked with a solid circle on vertical polarization
for the three media.

togrammetry (e.g. Khoshelham, 2009). In this study, we use
tie points as the typical TB values for 100 and 0 % concentra-
tions, which permit us to compute the sea ice concentration.
Tie points can therefore be viewed as SIC calibration points
because their expected radiation can be unambiguously de-
termined.

Figure 3 shows theoretical PD tie point values for open
water and sea ice, as well as ice with a snow layer. The val-
ues for an angle of incidence of 50◦ are marked by solid red
circles. This angle represents a good compromise in PD con-
trast between the two media and SMOS accuracy (Camps
et al., 2005). The two bounding values are 62.9 K for seawa-
ter and 26.8 K for ice with snow cover (Table 1). The large
difference between tie point values suggests that it is possible
to estimate SIC at the L band.

Figure 4 shows theoretical AD tie point values for differ-
ence in incidence angle1θ = 35◦ and angles of incidence up

Figure 5. Theoretical variation with sea ice thickness of (blue; left
axis) TB at nadir, (green; right axis) polarization difference (PD) at
50◦ incidence angle, and (red; right axis) angular difference (AD) at
1θ = 25◦ after the model by Burke et al. (1979) for a sea ice salinity
of 8 gkg−1, a sea ice temperature of −10 ◦C, and a snow layer of
10 cm thick over the ice. Note the factor-of-10 change between the
left and right vertical scales.

to θ = 30◦, which, per Eq. (11), represents the TBV difference
between θ = 60◦ and θ = 25◦. The values for an angle of in-
cidence of 25◦ are marked by solid red circles, for which the
tie points are 51.8 K for seawater and 8.6 K for ice with snow
cover (Table 1). Hereafter, PD and AD are evaluated at the
incidence angles of θ = 50◦ and θ = 25◦, respectively.

Figure 5 shows that TB at nadir increases non-linearly
as a function of ice thickness up to the saturation value of
∼ 250 K, which is reached when ice becomes about 70 cm
thick. Notice that TB estimates start at an ice thickness of
5 cm because there is a discontinuity in the Burke model as
the thickness of ice tends to zero (e.g. Kaleschke et al., 2010;
Mills and Heygster, 2011a; Maaß, 2013; Kaleschke et al.,
2013). Compared with TB, the total variation of both AD and
PD with ice thickness is significantly smaller, and they are
therefore better suited to estimate sea ice concentration.
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Table 2. Sensitivity of measurement TB, PD, and AD to ice temper-
ature (T ), salinity (S), and thickness (d).

Medium Index δI/δT δI/δS δI/δd

(I ) (K / ◦C) (K / gKg−1)∗ (K / cm)

TB 0.2 0.51 –
Seawater PD 0.26 0.21 –

AD 0.20 0.12 –

TB 0.85 1.00 1.2
Sea ice PD 0.66 0.35 0.02

AD 0.35 0.25 0.05

∗ Practical salinity units.

4.3 Sensitivity of estimates of sea ice concentration to
surface emissivity changes

In this section, we calculate the sensitivity of SIC estimates
to changes in surface emissivity due to variations in the phys-
ical properties of sea ice (i.e. salinity, temperature, and thick-
ness). We work with estimated SIC derived from the three in-
dices TB, PD, and AD. This is done following a standard er-
ror propagation method (as also used in Comiso et al., 1997).
It is important to determine how changes in ice conditions af-
fect SIC estimates through those three indices to try to mini-
mize SIC errors obtained using SMOS.

Table 2 lists the sensitivities, according to our theoretical
model, of the indices I (I = TB, PD, and AD) to the geo-
physical variables of ice and seawater – physical temperature
(i.e. δI/δT ), salinity (δI/δS), and thickness (δI/δd) – eval-
uated within the ranges of Twater = [2,15], Swater = [10,38],
Tice = [−20, −5], and Sice = [2,12]. It should be noted that
those sensitivities are calculated using the model and the
nominal Arctic temperature and salinity values defined in
Sect. 3. In order to assess which index is least sensitive to
changes in a given geophysical variable, we calculate abso-
lute sensitivities, defined as the sensitivities multiplied by the
dynamic range of the measurements.

Knowing the value of the tie points of sea ice
(SIC = 100 %) and seawater (SIC = 0 %), one can compute
the average slopes of the SIC estimates to their correspond-
ing parameters TB, PD, and AD (i.e. δSIC/δTB, δSIC/δPD,
and δSIC/δAD). From data in Table 1, we obtain the av-
erage slopes as δSIC/δTB = 0.65, δSIC/δPD= 2.32, and
δSIC/δAD= 2.77. These slopes can be used to propagate
TB, AD, and PD errors to errors in the SIC estimates.

We assume reasonable values for the variability of the
physical parameters on which our emissivity model depends
– namely T , S, and d of ice (generically denoted by g) – as
follows: 1T = 5 K, 1S = 4 gkg−1, and 1d = 30 cm. Us-
ing the values in Table 2 and the calculated average slopes,
one can finally compute the errors in SIC estimates associ-
ated with the geophysical variability of g when the index I is

Table 3. Propagated SIC error using each index, computed from
Eq. (12) for assumed (T , S, d) variations and root sum square
(RSS).

SIC error Index 1T 1S 1d RSS
(%) used 5 K 4 gkg−1 30 cm

1SIC TB 2.8 2.6 23.4 23.7
1SIC PD 7.6 3.2 1.4 8.3
1SIC AD 4.8 2.8 4.2 7.0

used to evaluate SIC as

1SIC|g =
∣∣∣∣δSIC
δI

∣∣∣∣ · ∣∣∣∣δIδg
∣∣∣∣ ·1g. (12)

To evaluate the final impact of geophysical variability on
the SIC evaluation using the index I , we compute the root
sum square (RSS) of the SIC uncertainties due to the geo-
physical parameters (Table 3). The table shows that AD is
the most robust index to retrieve SIC, slightly better than PD,
and significantly better than TB. Because TB is theoretically
more sensitive to thin ice than the other two indices, one can
expect that the use of TB to retrieve SIC would result in larger
SIC errors. Moreover, the uncertainty distribution of TB is too
broad, especially due to thickness, and thus less adequate to
fulfil the statistical hypotheses used to derive SIC. Despite
the uncertainties in the theoretical physical model of ice, we
consider the differences significant enough to focus on in-
version algorithms using the PD and AD indices, and not on
TB.

4.4 Comparison with empirical tie points

Following the theoretical analysis, we now turn to evalu-
ating its performance empirically. We therefore select sev-
eral regions of interest in the Arctic Ocean where SIC has
been determined to be either 0 or 100 % by other sensors
and methods. To identify such regions, we use SIC maps
from OSI SAF and from the National Ice Center. In partic-
ular, we selected the open-seawater region within latitudes
55–70◦ N and longitudes 20◦W and 25◦ E, which comprises
more than 2000 pixels in a typical SMOS image. For sea ice,
we selected the MY ice region within latitudes 78–83◦ N (the
northernmost latitude observable by SMOS) and longitudes
75–150◦W, which comprises about 1000 pixels per SMOS
image. We expect some level of uncertainty associated with
the selection of the region to compute the 100 % tie points for
summer periods stemming from known errors in the summer
SIC products by OSI SAF (Tonboe et al., 2016).

We calculated SMOS brightness temperatures of these tar-
get regions to evaluate their potential as empirical tie points
for seawater and sea ice. The temporal variation, in 2014, of
the spatially averaged (median) TB at nadir of the two ge-
ographic regions is shown in Fig. 6. The values are consis-
tent with the modelled values in Table 1. For the seawater
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Figure 6. Temporal variation of the average brightness temperature
TB at nadir for (top) multi-year sea ice and (bottom) seawater at the
two regions for generating tie points. Note the factor-of-4 change in
the vertical scales.

region, the figure shows that the brightness temperature is
constant, at about 99 K, to within ∼ 2.5 K (1σ standard de-
viation) throughout the year. For the ice region, TB is also
stable during the non-summer months, but it drops by about
20 K during the summer season due to changes in surface
emissivity associated with snow and ice melt and concur-
rent formation of meltwater ponds. The factor-of-2 increase
in formal error in summer relative to winter is also an indica-
tion of increased radiometric variability in surface conditions
(as shown in Table 1).

Figure 7 shows that the temporal radiometric stability of
the seawater region during 2014, and that of sea ice during
the non-summer months, is also reflected in the AD and PD
indices, as one would expect. This suggests that a different
set of tie points during winter and summer periods could be
beneficial for the quality of the SIC retrievals. On the other
hand, the AD and PD tie point values are very stable during
winter and spring (November to June), indicating that values
are robust to variations in physical temperature and that it
may not be necessary to compute tie point values often (daily
or monthly), as done with the OSI SAF product.

Figure 8 shows a 2-D scatter plot of AD and PD indices
for the two regions defined above during March (winter tie
point) and July (summer tie point) 2014. The index values
associated with seawater and with ice group form two well-
differentiated clusters, which implies that the two types of
regions can be clearly segregated using these indices. This is
also true for the summer tie points even though in this case
the dispersion is larger and values are closer to sea tie points,
as expected following Fig. 7.

The modelled (with snow and without) and observed TB,
AD, and PD tie point values for winter and summer 2014, as
well as the standard deviation (σ ) of the measurements, are

Figure 7. Same as Fig. 6 except here for angular and polarization
difference indices.
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Figure 8. Scatter plot of the angular difference vs. polarization dif-
ference in March and July 2014, with (red-to-blue) high-to-low in-
dex occurrence values for the two regions for generating tie points,
i.e. 0 and 100 % sea ice concentration (SIC).

listed in Table 1. It is encouraging that most of the values are
in agreement at about 2σ despite underlying model assump-
tions such as uniform sea ice temperature and specular ocean
surface. Another important result is that the observed SMOS
data are closer to the model when snow is considered.

4.5 Retrieval of sea ice concentration

The brightness temperature of mixed pixels – that is, ocean
pixels partially covered by sea ice – can be expressed as a lin-
ear combination of the brightness temperature of ice and sea-
water weighted by the percentage of each surface type (e.g.
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Comiso et al., 1997):

TBmixed = C TBice + (1−C)TBwater , (13)

where C is the fraction of ice present in a pixel, with C = 1
corresponding to 100 % of ice and C = 0 to 0 % of ice, or
equivalently 100 % of seawater. Since AD and PD (Eqs. 10–
11) depend linearly on brightness temperature, Eq. (13) can
be used to express both AD and PD.

There are several possible strategies to estimate sea ice
concentration at a given pixel from the AD and PD values
measured at that pixel. The simplest approach is to consider
that the values of the tie points are good representatives of the
values of AD and PD at the respective medium, i.e. seawater
and sea ice, such that

AD≈ CADice+ (1−C)ADwater,

PD≈ CPDice+ (1−C)PDwater. (14)

ConcentrationC can thus be retrieved from the value of ei-
ther AD or PD by inverting the associated linear equation. In
general, C can also be evaluated simultaneously with the AD
and the PD observations by averaging the values obtained
from both indices as

C =
1
2

[
AD−ADwater

ADice−ADwater
+

PD−PDwater

PDice−PDwater

]
. (15)

This is known as the linear estimation of SIC. However,
this approach might be too simple, as the values of AD and
PD on ice and seawater can have some non-negligible disper-
sion due to geophysical conditions and to radiometric noise.

In this paper, a new inversion algorithm to estimate C is
presented, which considers that AD and PD have known dis-
tributions, and by combining the observations it is possible
to infer the value of C that is statistically more probable.

The distributions of the SMOS AD and PD are unimodal
and symmetric (not shown), thus allowing us to approximate
them by Gaussians and considering the pure ice and pure
sea measurements as independent. Therefore we can easily
use a MLE approach. The MLE has many optimal proper-
ties in statistical inference such as (e.g. Myung, 2003) suffi-
ciency (the complete information about the parameter of in-
terest is contained in the MLE estimator), consistency (the
true value of the parameter that generated the data is recov-
ered asymptotically, i.e. for sufficiently large samples), ef-
ficiency (asymptotically, it has the lowest-possible variance
among all possible parameter estimates), and parameteriza-
tion invariance (same MLE solution obtained independent of
the parametrization used).

Assuming the linearity superposition of indices (Eq. 14),
it follows that the distributions of AD and PD (fAD, fPD) in
a general ocean pixel can be expressed as

fAD ∼N
(
CADice+ (1−C)ADwater ,√
C2σ 2

ADice
+ (1−C)2σ 2

ADwater

)
, (16)

fPD ∼N
(
CPDice+ (1−C)PDwater ,√
C2σ 2

PDice
+ (1−C)2σ 2

PDwater

)
, (17)

where the bar over the AD and PD indices refers to their
mean values, the subindex identifies the medium, and σ is the
associated standard deviation for each index and media. To
obtain the mean and standard deviation values, we used the
SMOS measurements at the regions for generating tie points
and periods discussed in Sect. 4.4. The symbolN means nor-
mal probability density function.

As a first approximation, we have considered AD and PD
two independent variables. It thus follows that the likelihood
function L is equal to the product of their distributions or,
equivalently and conveniently, to their sum (recall that the
likelihood is the logarithm of the probability density func-
tion):

l̂ = ln(L)= ln(fAD)+ ln(fPD). (18)

The MLE of SIC is the value of C that maximizes the likeli-
hood function l̂.

5 Results

5.1 Quality algorithm assessment

We have calculated AD and PD values from SMOS bright-
ness temperature and used the MLE approach to obtain SIC
estimates over the Arctic Ocean for the year 2014. We have
estimated SIC using different tie points, characterized by
their central value and dispersion. For seawater, we have used
a single year-round median value and the associated standard
deviation for each index. For ice tie points, we have used two
sets of values, as suggested by the results in Fig. 7. For the
first set, we have computed for all years the median of the tie
points between December and May (Table 1), i.e. the winter–
spring months, when Arctic sea ice extent is close to its an-
nual maximum. For the second set, we have used those same
winter–spring values for the months of October through May
but the average of the summer values for the months between
June and September (Table 1). We have used neither the Oc-
tober nor the November data to compute ice tie point values
because these are months of maximum extension of thin ice,
and underlying emission through thin ice could cause some
errors on the SIC estimates (Fig. 5 and Table 2).

The root-mean-square (rms) error of SIC retrievals rela-
tive to OSI SAF over the Arctic Ocean is shown in Fig. 9.
Four types of retrievals and two sets of tie points are com-
pared. Introducing a specific set of summer tie points (black
solid line) reduces the rms error with respect to using only
one unique tie point for the whole year (black dotted line).
The rms reduction is about 24 and 12 % in July and August,
respectively, and to smaller degree in June and September.
Therefore, we will hereafter use a different set of tie point
values in summer and winter.
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Figure 9. Comparison against OSI SAF of one tie point (black dot-
ted line) vs. two tie points (black plane line) with MLE, and MLE
vs. linear retrieval techniques. If not defined in the labels, it is two
tie points.

Furthermore, using the set of summer–winter tie points,
results from four types of inversions that stem from combina-
tions of linear and MLE method and indices are compared in
Fig. 9. The lowest rms values through all months in 2014 but
January are obtained with the MLE inversion algorithm and
the AD index alone. The evolution throughout the year of the
rms obtained with the linear retrieval method is similar in the
case of the MLE method, albeit with a ∼ 5–10 % increased
noise level. Larger rms values and increased temporal vari-
ability are observed when the PD index is also used. The rms
error of all retrievals is largest in fall, in particular if the PD
index is used. Those are months of ice formation; therefore
vast regions become covered with frazil ice, nilas, and thin
young ice, following the minimum ice extension of Septem-
ber. All methods converge to similar results in September,
since this period is the one with minimum ice extension and
minimum thin ice is expected (thus resulting in very small
difference between using AD or AD and PD methods).

The spatial variation of the difference in MLE SIC re-
trievals when using only the AD index and when using the
AD and PD indices for the period 2–5 November 2014 is
shown in Fig. 10. As expected, the largest differences are
associated with regions of thin ice formation, in particular
in the Laptev Sea, Kara Sea, and along the edge of the ice
pack both in the western Arctic and in the Atlantic sector. To-
gether, the spatio-temporal snapshots in Figs. 9 and 10 high-
light the sensitivity of PD to the presence of thin ice, which
naturally leads to an increase of the retrieval error when PD is
used. This conclusion is not fully consistent with the analysis
done using the models in Sect. 4.3 on the dependence of the
indices (TB, PD, AD) on ice thickness. Table 2 shows that,
theoretically, PD is slightly less sensitive to thin ice than AD.
However, the AD index is the least sensitive (lowest RSS) to
variations of all the analysed variables. Therefore, we will

Figure 10. SMOS SIC with MLE AD+PD minus SMOS SIC with
MLE AD inversion techniques for 3 November 2014. SIC scale is
presented from 0 to 1.

hereafter use the AD index, summer–winter tie point values,
and an MLE-based estimator for SIC retrievals.

5.2 Accuracy assessment of SMOS SIC retrievals

We have evaluated the mutual consistency of the SMOS SIC
retrievals, and in the process we have determined which is
the approach that leads to the minimum error in the retrieval
of SIC. We now evaluate the accuracy of those retrievals. Al-
though a representative (in the space–time domain) ground-
truth dataset that allows us to assess the accuracy of SMOS
retrievals does not exist, the SIC estimates from OSI SAF are
a good option for cross-check. They are independent from
SMOS, the spatio-temporal sampling and resolution of their
products are commensurate with those of SMOS, and their
error budget is available.

The spatial distribution of SMOS SIC in the Arctic Ocean
has been estimated from SMOS data for the 3-day period 2–
5 March 2014, and it has been compared with the OSI SAF
SIC product on 4 March 2014. The largest differences be-
tween both algorithms are located at the margins of the sea
ice cover, where thinner ice can be expected (see Fig. 11).
March is the month of maximum sea ice extent, but the re-
sults for other winter months are similar.

On the other hand, November is the month of maximum
extension of thin young ice, especially through the Beaufort
Sea since ice in the Laptev and Kara seas remains thin dur-
ing winter (Shokr and Dabboor, 2013). Significantly larger
differences between SMOS and OSI SAF products are now
observed over a much wider area of the Arctic Ocean includ-
ing the Barents, Kara, Laptev, East Siberian, and Beaufort
seas (Fig. 12).

The brightness temperature measured by a passive mi-
crowave radiometer increases with sea ice thickness up to
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Figure 11. SMOS SIC with MLE (a), OSI SAF SIC (b), and the differences (c) for 3 March 2014.

Figure 12. SMOS SIC with MLE (a), OSI SAF SIC (b), and the differences (c) for 3 November 2014.

a saturation value. Such an increase is more gradual for low
frequencies and horizontal polarization (e.g. Ivanova et al.,
2015). At the SMOS L band, the increase of emissivity with
ice thickness reaches saturation for an ice thickness that
is about 60 cm, depending on ice salinity and temperature
(Kaleschke et al., 2012), whereas at the OSI SAF frequen-
cies (19 and 37 GHz) it is only a few centimetres (Heygster
et al., 2014; Ivanova et al., 2015). For example, for pixels
that are 100 % covered by thin ice of, say, 25 cm thickness,
the AD and PD values for those pixels will be slightly dif-
ferent than the tie point value of ice because the value of ice
tie points was computed from thick MY ice (see Fig. 5) for
model analysis. This contrast leads to a difference in classi-
fication of such pixels, which will be considered mixtures of
water and ice in the case of SMOS and as 100 % ice with OSI
SAF. In other words, the estimation of SIC of a sea covered
by frazil ice and nilas will be higher for OSI SAF than for
SMOS.

To further analyse this classification difference, we have
calculated the probabilities of SMOS SIC conditioned by
values of OSI SAF SIC using a full year, 2014, of Arctic-
wide estimates. The probability of estimating a SIC value
with SMOS that is less than or equal to 5 % when the esti-
mated OSI SAF SIC is 0 % is shown in Fig. 13 (red line). As
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Figure 13. Probability of having SMOS SIC more than 0.90 where
OSI SAF SIC = 1 (blue line) and SMOS SIC less than 0.05 where
OSI SAF SIC = 0 (red line) for 2014. Summer tie points are used
for retrievals from June to September.

expected, the conditioned probability is very high throughout
the year. This implies that both products have a similar abil-
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Figure 14. Classification of the Arctic region according to values of SMOS and OSI SAF SIC during March (a) and November (b) 2014.
Three classes are shown: (1) OSI SAF SIC< 0.9, (2) OSI SAF SIC> 0.9 and SMOS SIC< 0.9, and (3) OSI SAF SIC> 0.9 and SMOS
SIC> 0.9.

ity to detect (close to) 100 % ocean pixels. This implies that
the probability of having high SMOS SIC values when OSI
SAF is low is almost zero, which also means that the rate of
triggering false alarms on ice detection with SMOS is low.

However, the probability of estimating a SMOS SIC equal
to or higher than 90 % while the OSI SAF SIC is 100 % is
not constant during the year and decrease with respect to
the previous case. During the winter period (between January
and April), the conditioned probability is notably high (near
0.9) (see Fig. 13 blue line). Then it decreases sharply during
spring and most notably in summer. This change in the con-
ditioned probability starting in the spring could stem from a
change in ice properties. As the snow becomes wetter with
the onset of the melt season, the observed emissivity starts to
change, and this varies with the observating frequency (dif-
ferent scattering response). The observed increase of the con-
ditioned probability in June could be due to the use of a sum-
mer tie point (applied from June to September), which im-
proved the rms with respect to OSI SAF as shown in Fig. 9.
The low conditioned probability in fall can be explained by
the presence of thin ice.

We have analysed the spatial distribution of the condi-
tioned probability of SIC estimates for the months of March
and November. Those regions where OSI SAF SIC is more
than 0.9 while SMOS SIC is less than 0.9 (light blue colour
in Fig. 14) outline the edge of the ice cover. This is in good
correspondence with the expected areas of thin ice. Addi-
tionally, this condition is extended when analysing Novem-
ber data (Fig. 14b), when thin ice is more frequent in the
Arctic.

During the winter months, the spatial coefficients of de-
termination (r2) between SMOS and OSI SAF SIC are high
(more than 0.65), which again is consistent with our interpre-
tation about the role of thin ice in SMOS SIC (see Fig. 15).
As melt starts, the correlation between SIC estimates con-
tinues to be high, thanks to the use of the summer tie point

Figure 15. Coefficient of determination (R2) between SMOS and
OSI SAF SIC for 2014, considering only SIC data in the range from
5 to 95 %.

in the retrieval. In September, ice cover extent is at mini-
mum because ice growth has not started yet, there is almost
no thin ice, and the correlation remains high. The correla-
tion drops in the fall (between October and December) be-
cause ice growth starts by freezing of the sea surface, produc-
ing large amounts of new thin ice. To compute these values,
we have only included SIC values between 0.05 (5 %) and
0.95 (95 %) when computing correlations to avoid the two
extreme values leading to too-high, non-significant values of
correlation.

6 Discussion

The two PD and AD indices, which are derived from bright-
ness temperature, have been designed to maximize their dif-
ferences between open water and sea ice. Both have a low
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response to changes in the geophysical characteristics of the
media, which has been confirmed by using theoretical mod-
els and by performing sensitivity analysis.

The tie points, defined as the characteristic values of our
reference indices on the different media, have been calcu-
lated from SMOS data. Compared to theoretical values, some
small discrepancies at the 10–20 % level have been observed,
probably due to simplifying assumptions such flat surface
ice, flat sea, and constant temperature at the layers used in the
theoretical models. We have thus decided to follow a more
empirical approach. The use of two sets of tie points, one
for summer and one for winter measurements, improves the
results of the summer SIC maps relative to static unique tie
points. This improvement is not caused by changes in the ice
or sea physical temperature but most probably by changes in
the ice properties, because as snow and ice become wetter
during the melt season, the observed radiometric emission
changes. This effect is also observed in measurements from
radiometers at higher frequencies than SMOS.

We have introduced the MLE inversion algorithm to re-
trieve SIC from SMOS data. The method is based on the
maximization of the a posteriori likelihood of the joint dis-
tribution of AD and PD indices, assuming that they are in-
dependent and normally distributed. This MLE algorithm is
more robust (less noisy) than the linear inversion (Eq. 14).
It also improves the retrieved SMOS SIC with respect to a
linear inversion method because the former takes into ac-
count the dispersion (error) of the tie points (reference),
which makes the algorithm more robust to TB errors. SIC
maps obtained using only the AD index are of better qual-
ity than when the AD and PD indices are used together. We
attribute this to the higher sensitivity of PD than AD to phys-
ical changes in the media.

SMOS and OSI SAF SIC maps compare well in terms of
correlation (determination coefficient higher than 0.65) and
rms except in areas of thin sea ice. This difference can be ex-
plained by the higher penetration of SMOS in sea ice (about
60 cm) than that from higher-frequency radiometers. Thus,
when ice is thinner than 60 cm, SMOS data lead to lower
values of SIC that OSI SAF.

7 Conclusions

Estimating SIC using L-band observations such as those
from SMOS is recommended for the negligible effect of the
atmosphere on brightness temperatures, and also because the
vertical polarization of TB is insensitive to snow depth (Maaß
et al., 2015).

Two indices derived from brightness temperature, PD and
AD, have been chosen, since they verify the two required
conditions: they maximize the difference between open water
and sea ice, and they present a low response to changes in the
geophysical characteristics of the media. AD and PD tie point
values have been shown to be very stable during winter and

spring periods (Fig. 7), indicating that the values are robust
to variations in physical temperature. Thanks to that, one can
safely assume two sets of static (i.e. not temporally varying)
tie points, one for summer and one for winter for SMOS data,
and not fortnightly or monthly as is done in the case of the
OSI SAF product.

We have shown that the best configuration for SIC retrieval
is using AD only with the MLE inversion method. We ex-
clude PD and TB because they are more sensitive to ice thick-
ness; therefore, the combined use of AD and PD presents
larger errors when thin ice is present (fall). The MLE in-
version method presents better results than a linear inversion
since it takes into account the uncertainty of the tie points.

SIC estimates from SMOS have some drawbacks with re-
spect to those from higher-frequency radiometers. For exam-
ple, whereas the spatial resolution of the high-frequency SIC
estimates can reach ∼ 3 km, the resolution from SMOS will
not be better than about 35 km. A second issue of SMOS
is that it underestimates SIC in the presence of thin ice,
which is characteristic of the ice edges and freeze-up pe-
riods. Therefore, SMOS data should be used in combina-
tion with some form of spatial masking for those regions.
We suggest that SIC estimates from SMOS can complement
those from higher-frequency radiometers, together yielding
enhanced SIC products.

This dataset could be very beneficial during the summer
period, since SMOS SIC, theoretically, should be less sen-
sitive to summer metamorphosis, due to the larger wave-
length. Previous works show that the TB and SIC measured
at 6.9 GHz band are more robust to summer ice changes than
higher-frequency measurements (Kern et al., 2016; Gabarro,
2017). The confirmation of this statement will be done as fu-
ture work.
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