Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-613-2016
https://doi.org/10.5194/tc-10-613-2016
Research article
 | 
15 Mar 2016
Research article |  | 15 Mar 2016

Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

Wiley Steven Bogren, John Faulkner Burkhart, and Arve Kylling

Related authors

Estimating volcanic ash emissions using retrieved satellite ash columns and inverse ash transport modelling using VolcanicAshInversion v1.2.1, within the operational eEMEP volcanic plume forecasting system (version rv4_17)
André R. Brodtkorb, Anna Benedictow, Heiko Klein, Arve Kylling, Agnes Nyiri, Alvaro Valdebenito, Espen Sollum, and Nina Kristiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-51,https://doi.org/10.5194/egusphere-2023-51, 2023
Short summary
Total ozone trends at three northern high-latitude stations
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023,https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 2: Impact on NO2 retrieval and mitigation strategies
Huan Yu, Claudia Emde, Arve Kylling, Ben Veihelmann, Bernhard Mayer, Kerstin Stebel, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 5743–5768, https://doi.org/10.5194/amt-15-5743-2022,https://doi.org/10.5194/amt-15-5743-2022, 2022
Short summary
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 3: Bias estimate using synthetic and observational data
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022,https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
What caused a record high PM10 episode in northern Europe in October 2020?
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022,https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary

Related subject area

Remote Sensing
Out-of-the-box calving-front detection method using deep learning
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023,https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Mapping the extent of giant Antarctic icebergs with deep learning
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023,https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Allometric scaling of retrogressive thaw slumps
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023,https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023,https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023,https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary

Cited articles

Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric constituent profiles (0–120 km), Hansom AFB, Bedford, MA, 1986.
Aoki, T., Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface, J. Geophys. Res., 105, 10219–10236, 2000.
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: Surfrad – a national surface radiation budget network for atmospheric resarch, B. Am. Meteorol. Soc., 81, 2341–2357, 2000.
Bais, A. F., Kazadzis, S., Balis, D., Zerefos, C. S., and Blumthaler, M.: Correcting global solar ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error, Appl. Optics, 37, 6339–6444, 1998.
Bernhard, G. and Seckmeyer, G.: Uncertainty of measurements of spectral solar UV irradiance, J. Geophys. Res., 104, 14321–14345, 1999.
Download
Short summary
The magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance is evaluated. It is shown that relatively minor sensor misalignments give significant errors in irradiance and hence albedo measurements. The total measurement error introduced by sensor tilt is dominated by the direct component. Significant measurement error can also persist in integrated daily irradiance and albedo.