Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-613-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-613-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
Wiley Steven Bogren
NILU – Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
now at: NIBIO – Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
John Faulkner Burkhart
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
Sierra Nevada Research Institute, University of California, Merced, California, USA
Arve Kylling
NILU – Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
Related authors
No articles found.
André R. Brodtkorb, Anna Benedictow, Heiko Klein, Arve Kylling, Agnes Nyiri, Alvaro Valdebenito, Espen Sollum, and Nina Kristiansen
Geosci. Model Dev., 17, 1957–1974, https://doi.org/10.5194/gmd-17-1957-2024, https://doi.org/10.5194/gmd-17-1957-2024, 2024
Short summary
Short summary
It is vital to know the extent and concentration of volcanic ash in the atmosphere during a volcanic eruption. Whilst satellite imagery may give an estimate of the ash right now (assuming no cloud coverage), we also need to know where it will be in the coming hours. This paper presents a method for estimating parameters for a volcanic eruption based on satellite observations of ash in the atmosphere. The software package is open source and applicable to similar inversion scenarios.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Huan Yu, Claudia Emde, Arve Kylling, Ben Veihelmann, Bernhard Mayer, Kerstin Stebel, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 5743–5768, https://doi.org/10.5194/amt-15-5743-2022, https://doi.org/10.5194/amt-15-5743-2022, 2022
Short summary
Short summary
In this study, we have investigated the impact of 3D clouds on the tropospheric NO2 retrieval from UV–visible sensors. We applied standard NO2 retrieval methods including cloud corrections to synthetic data generated by the 3D radiative transfer model. A sensitivity study was done for synthetic data, and dependencies on various parameters were investigated. Possible mitigation strategies were investigated and compared based on 3D simulations and observed data.
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
Short summary
Atmospheric trace gases such as nitrogen dioxide (NO2) may be measured by satellite instruments sensitive to solar ultraviolet–visible radiation reflected from Earth and its atmosphere. For a single pixel, clouds in neighbouring pixels may affect the radiation and hence the retrieved trace gas amount. We found that for a solar zenith angle less than about 40° this cloud-related NO2 bias is typically below 10 %, while for larger solar zenith angles the NO2 bias is on the order of tens of percent.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Claudia Emde, Huan Yu, Arve Kylling, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 1587–1608, https://doi.org/10.5194/amt-15-1587-2022, https://doi.org/10.5194/amt-15-1587-2022, 2022
Short summary
Short summary
Retrievals of trace gas concentrations from satellite observations can be affected by clouds in the vicinity, either by shadowing or by scattering of radiation from clouds in the clear region. We used a Monte Carlo radiative transfer model to generate synthetic satellite observations, which we used to test retrieval algorithms and to quantify the error of retrieved NO2 vertical column density due to cloud scattering.
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Short summary
Measurements of total ozone and effective cloud transmittance (eCLT) have been performed since 1995 at three Norwegian sites with GUV multi-filter instruments. The unique data sets of high-time-resolution measurements can be used for a broad range of studies. Data analyses reveal an increase in total ozone above Norway from 1995 to 2019. Measurements of GUV eCLT indicate changes in albedo in Ny-Ålesund (Svalbard) during the past 25 years, most likely resulting from increased Arctic ice melt.
John F. Burkhart, Felix N. Matt, Sigbjørn Helset, Yisak Sultan Abdella, Ola Skavhaug, and Olga Silantyeva
Geosci. Model Dev., 14, 821–842, https://doi.org/10.5194/gmd-14-821-2021, https://doi.org/10.5194/gmd-14-821-2021, 2021
Short summary
Short summary
We present a new hydrologic modeling framework for interactive development of inflow forecasts for hydropower production planning and other operational environments (e.g., flood forecasting). The software provides a Python user interface with an application programming interface (API) for a computationally optimized C++ model engine, giving end users extensive control over the model configuration in real time during a simulation. This provides for extensive experimentation with configuration.
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, https://doi.org/10.5194/hess-24-4641-2020, 2020
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020, https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
Short summary
Atmospheric turbulence and its effect on tracer dispersion in particular may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2). Using large eddy simulation and 3D Monte Carlo radiative transfer modelling of a SO2 plume, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019, https://doi.org/10.5194/amt-12-3673-2019, 2019
Short summary
Short summary
This article presents the updated MAPIR algorithm, which uses infrared satellite data to obtain the global 3-D distribution of mineral aerosols. A description of the method together with its technical improvements is given. Additionally, a 10-year data set was generated and used to evaluate this new algorithm against AERONET, CALIOP, CATS and two ground-based lidar stations. We have shown that the new MAPIR algorithm provides reliable aerosol optical depth and dust layer mean altitude profiles.
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Short summary
The present study provided information on specific glaciers over the Hindu Kush Himalayan region identified as being vulnerable to BC-induced impacts (affected by high BC-induced snow albedo reduction in addition to being sensitive to BC-induced impacts), thus impacting the downstream hydrology. The source-specific contribution to atmospheric BC aerosols by emission sources led to identifying the potential emission source, which was distinctive over south and north to 30° N.
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, https://doi.org/10.5194/acp-19-1393-2019, 2019
Short summary
Short summary
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data, we estimated that the total burned area was 2345 ha, the fuel amount consumed 117 kt C and the emissions of BC, OC and BrC 23.5, 731 and 141 t, respectively. About 30 % of the emissions were deposited on snow or ice surfaces. This caused a maximum albedo change of 0.007 and a surface radiative forcing of 0.03–0.04 W m−2, with local maxima of up to 0.63–0.77 W m−2. Overall, the fires had a small impact.
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech., 11, 6169–6188, https://doi.org/10.5194/amt-11-6169-2018, https://doi.org/10.5194/amt-11-6169-2018, 2018
Short summary
Short summary
This study presents an artificial release experiment aimed to improve the understanding of turbulence in the atmospheric boundary layer. A new set of image processing methods was developed to analyse the turbulent dispersion of sulfur dioxide (SO2) puffs. For this a tomographic setup of six SO2 cameras was used to image artificially released SO2 gas.
Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci., 22, 5021–5039, https://doi.org/10.5194/hess-22-5021-2018, https://doi.org/10.5194/hess-22-5021-2018, 2018
Arve Kylling, Sophie Vandenbussche, Virginie Capelle, Juan Cuesta, Lars Klüser, Luca Lelli, Thomas Popp, Kerstin Stebel, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2911–2936, https://doi.org/10.5194/amt-11-2911-2018, https://doi.org/10.5194/amt-11-2911-2018, 2018
Short summary
Short summary
The aerosol layer height is one of four aerosol parameters which is needed to enhance our understanding of aerosols' role in the climate system. Both active and passive measurement methods may be used to estimate the aerosol layer height. Aerosol height estimates made from passive infrared and solar satellite sensors measurements are compared with satellite-borne lidar estimates. There is considerable variation between the retrieved dust heights and how they compare with the lidar.
Jonas Gliß, Kerstin Stebel, Arve Kylling, and Aasmund Sudbø
Atmos. Meas. Tech., 11, 781–801, https://doi.org/10.5194/amt-11-781-2018, https://doi.org/10.5194/amt-11-781-2018, 2018
Short summary
Short summary
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF) algorithms applied to remote sensing imagery. OF algorithms can measure the velocities on a pixel level between consecutive images. An issue of OF algorithms is that they often fail to detect motion in contrast-poor image areas. A correction based on histograms of an OF vector field is proposed. The new method is applied to two example volcanic data sets from Mt Etna, Italy and Guallatiri, Chile.
Felix N. Matt, John F. Burkhart, and Joni-Pekka Pietikäinen
Hydrol. Earth Syst. Sci., 22, 179–201, https://doi.org/10.5194/hess-22-179-2018, https://doi.org/10.5194/hess-22-179-2018, 2018
Short summary
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
Birthe Marie Steensen, Arve Kylling, Nina Iren Kristiansen, and Michael Schulz
Atmos. Chem. Phys., 17, 9205–9222, https://doi.org/10.5194/acp-17-9205-2017, https://doi.org/10.5194/acp-17-9205-2017, 2017
Short summary
Short summary
An inversion method is tested in a forecasting setting for constraining ash dispersion by satellite observations. The sensitivity of a priori and
satellite uncertainties is tested for the a posteriori term. The a posteriori is also tested with four different assumptions affecting the retrieved
ash satellite data. In forecasting mode, the a posteriori changes after only 12 h of satellite observations and produces better forecasts than a priori.
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017, https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary
Short summary
We present the first use of spectrometer measurements from a drone to assess reflectance and albedo over the Greenland Ice Sheet. In order to measure albedo – a critical parameter in the earth's energy balance – a drone was flown along 200 km transects coincident with Terra and Aqua satellites flying MODIS. We present a direct comparison of UAV-measured reflectance with satellite data over Greenland and provide a new method to study cryospheric surfaces using UAV with spectral instruments.
Frances Beckett, Arve Kylling, Guðmunda Sigurðardóttir, Sibylle von Löwis, and Claire Witham
Atmos. Chem. Phys., 17, 4401–4418, https://doi.org/10.5194/acp-17-4401-2017, https://doi.org/10.5194/acp-17-4401-2017, 2017
Short summary
Short summary
Ash deposits can be remobilized for years following a volcanic eruption, and the resulting resuspended ash clouds can pose a significant hazard to local populations and airports. The aim of this work is to improve our ability to forecast resuspended ash storms. We use satellite imagery to constrain the emission rate of resuspended particles in an atmospheric dispersion model used to forecast resuspension events in Iceland.
Umed Paliwal, Mukesh Sharma, and John F. Burkhart
Atmos. Chem. Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, https://doi.org/10.5194/acp-16-12457-2016, 2016
Short summary
Short summary
The article presents a comprehensive and unique emissions inventory for black carbon in India for the year 2011. It is a unique assessment of emissions in that it i) provides a temporally varying emissions estimate for all of India, ii) provides the inventory on a 40 × 40 km2 grid, and iii) includes sources previously not considered (cell tower and small commercial generators and kerosene lamps).
Arve Kylling
Atmos. Meas. Tech., 9, 2103–2117, https://doi.org/10.5194/amt-9-2103-2016, https://doi.org/10.5194/amt-9-2103-2016, 2016
Short summary
Short summary
During volcanic eruptions the presence of ice clouds may affect the volcanic ash signal in infrared satellite measurements. By comparison of measured infrared spectra with spectra from a radiative transfer model including both ash and ice clouds, it is shown that during the Mt Kelud February 2014 eruption, both ash and ice clouds were present simultaneously. The presence of ice clouds lowers the estimated amount of volcanic ash in the atmosphere.
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, https://doi.org/10.5194/acp-15-6827-2015, 2015
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
A. Kylling, M. Kahnert, H. Lindqvist, and T. Nousiainen
Atmos. Meas. Tech., 7, 919–929, https://doi.org/10.5194/amt-7-919-2014, https://doi.org/10.5194/amt-7-919-2014, 2014
J. Brioude, D. Arnold, A. Stohl, M. Cassiani, D. Morton, P. Seibert, W. Angevine, S. Evan, A. Dingwell, J. D. Fast, R. C. Easter, I. Pisso, J. Burkhart, and G. Wotawa
Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, https://doi.org/10.5194/gmd-6-1889-2013, 2013
A. Kylling, R. Buras, S. Eckhardt, C. Emde, B. Mayer, and A. Stohl
Atmos. Meas. Tech., 6, 649–660, https://doi.org/10.5194/amt-6-649-2013, https://doi.org/10.5194/amt-6-649-2013, 2013
Related subject area
Remote Sensing
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
Lake ice break-up in Greenland: timing and spatiotemporal variability
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Mapping surface hoar from near-infrared texture in a laboratory
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Retrieval of snow water equivalent from dual-frequency radar measurements: using time series to overcome the need for accurate a priori information
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Tower-based C-band radar measurements of an alpine snowpack
Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Co-registration and residual correction of digital elevation models: a comparative study
Sentinel-1 Detection of Ice Slabs on the Greenland Ice Sheet
Out-of-the-box calving-front detection method using deep learning
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago: 2016–2022
Mapping the extent of giant Antarctic icebergs with deep learning
Allometric scaling of retrogressive thaw slumps
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 2: Snow processes and snow–canopy interactions
Evaluating Snow Microwave Radiative Transfer (SMRT) model emissivities with 89 to 243 GHz observations of Arctic tundra snow
Brief communication: Identification of tundra topsoil frozen/thawed state from SMAP and GCOM-W1 radiometer measurements using the spectral gradient method
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA’s Airborne Topographic Mapper: observations and models
Cast shadows reveal changes in glacier surface elevation
AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini
Characterizing the surge behaviour and associated ice-dammed lake evolution of the Kyagar Glacier in the Karakoram
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas – a case study in the European Alps
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Climatic control on seasonal variations in mountain glacier surface velocity
Snowmelt characterization from optical and synthetic-aperture radar observations in the La Joie Basin, British Columbia
Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024, https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
Short summary
Radar beams from satellites exhibit reflection differences between water and ice. This condition, as well as the comprehensive coverage and high temporal resolution of the Sentinel-1 satellites, allows automatically detecting the timing of when ice cover of lakes in Greenland disappear. We found that lake ice breaks up 3 d later per 100 m elevation gain and that the average break-up timing varies by ±8 d in 2017–2021, which has major implications for the energy budget of the lakes.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024, https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary
Short summary
In situ techniques for snow depth (SD) measurement are not adequate to represent the spatiotemporal variability in SD in the Western Himalayan region. Therefore, this study focuses on the high-resolution mapping of daily snow depth in the Indian Western Himalayan region using passive microwave remote-sensing-based algorithms. Overall, the proposed multifactor SD models demonstrated substantial improvement compared to the operational products. However, there is a scope for further improvement.
James Dillon, Christopher Donahue, Evan Schehrer, Karl Birkeland, and Kevin Hammonds
EGUsphere, https://doi.org/10.5194/egusphere-2023-3133, https://doi.org/10.5194/egusphere-2023-3133, 2024
Short summary
Short summary
Surface hoar crystals are snow grains that form when vapor deposits on the snow surface. They create a weak layer in the snowpack that can cause large avalanches to occur. Thus, determining when and where surface hoar forms is a lifesaving matter. Here, we developed a means of mapping surface hoar using remote sensing technologies. We found that surface hoar displayed heightened texture, hence the variability of brightness. Using this, we created surface hoar maps with accuracy upwards of 95 %.
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024, https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary
Short summary
This study built a glacial lake dataset with 15376 samples in seven types and proposed an automatic method by two-stage (the semantic segmentation network and post-processing) optimizations to detect glacial lakes. The proposed method for glacial lake extraction has achieved the best results so far, in which the F1 score and IoU reached 0.945 and 0.907, respectively. The area of the minimum glacial lake that can be entirely and correctly extracted has been raised to the 100 m2 level.
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152, https://doi.org/10.5194/tc-18-139-2024, https://doi.org/10.5194/tc-18-139-2024, 2024
Short summary
Short summary
Seasonal snow accumulates each winter, storing water to release later in the year and modulating both water and energy cycles, but the amount of seasonal snow is one of the most poorly measured components of the global water cycle. Satellite concepts to monitor snow accumulation have been proposed but not selected. This paper shows that snow accumulation can be measured using radar, and that (contrary to previous studies) does not require highly accurate information about snow microstructure.
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023, https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Short summary
To alleviate tedious manual image annotations for training deep learning (DL) models in floe instance segmentation, we employ a classical image processing technique to automatically label floes in images. We then apply a DL semantic method for fast and adaptive floe instance segmentation from high-resolution airborne and satellite images. A post-processing algorithm is also proposed to refine the segmentation and further to derive acceptable floe size distributions at local and global scales.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Matzler, and Hans Lievens
EGUsphere, https://doi.org/10.5194/egusphere-2023-2927, https://doi.org/10.5194/egusphere-2023-2927, 2023
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation, but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Tao Li, Yuanlin Hu, Bin Liu, Liming Jiang, Hansheng Wang, and Xiang Shen
The Cryosphere, 17, 5299–5316, https://doi.org/10.5194/tc-17-5299-2023, https://doi.org/10.5194/tc-17-5299-2023, 2023
Short summary
Short summary
Raw DEMs are often misaligned with each other due to georeferencing errors, and a co-registration process is required before DEM differencing. We present a comparative analysis of the two classical DEM co-registration and three residual correction algorithms. The experimental results show that rotation and scale biases should be considered in DEM co-registration. The new non-parametric regression technique can eliminate the complex systematic errors, which existed in the co-registration results.
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2652, https://doi.org/10.5194/egusphere-2023-2652, 2023
Short summary
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and how it changes with time. We present a method for mapping ice slabs and other refrozen ice using satellite radar imagery and apply this method to the whole ice sheet in winter 2016–2017. Our new map has significantly better spatial coverage and resolution than previous maps from airborne radar and lays the groundwork for long-term monitoring of ice slabs from space.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2023-2366, https://doi.org/10.5194/egusphere-2023-2366, 2023
Short summary
Short summary
The CAA serves as both a source and sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay and is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to the Parry Channel which spans the central region of the Northwest Passage.
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023, https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
The Cryosphere, 17, 4325–4341, https://doi.org/10.5194/tc-17-4325-2023, https://doi.org/10.5194/tc-17-4325-2023, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide snow profile input to emissivity simulations.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Steven J. Pestana, C. Chris Chickadel, and Jessica D. Lundquist
EGUsphere, https://doi.org/10.5194/egusphere-2023-1784, https://doi.org/10.5194/egusphere-2023-1784, 2023
Short summary
Short summary
We compared infrared images taken by GOES-R satellites of an area with snow and forests against surface temperature measurements taken on the ground, from an aircraft, and by another satellite. We found that GOES-R measured warmer temperatures than the other measurements, especially in areas with more forest, and when the sun was behind the satellite. From this work, we’ve learned that the position of the sun and surface features such as trees that can cast shadows impact GOES-R infrared images.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023, https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Short summary
In this study, we use satellite observations to investigate the evolution of melt ponds on the Arctic sea ice surface. We derive melt pond depth from ICESat-2 measurements of the pond surface and bathymetry and melt pond fraction (MPF) from the classification of Sentinel-2 imagery. MPF increases to a peak of 16 % in late June and then decreases, while depth increases steadily. This work demonstrates the ability to track evolving melt conditions in three dimensions throughout the summer.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-126, https://doi.org/10.5194/tc-2023-126, 2023
Revised manuscript accepted for TC
Short summary
Short summary
We use green lidar data and natural color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Monika Pfau, Georg Veh, and Wolfgang Schwanghart
The Cryosphere, 17, 3535–3551, https://doi.org/10.5194/tc-17-3535-2023, https://doi.org/10.5194/tc-17-3535-2023, 2023
Short summary
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023, https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023, https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary
Short summary
The large amount of information regularly acquired by satellites can provide important information about SWE. We explore the use of multi-source satellite data, in situ observations, and a degree-day model to reconstruct daily SWE at 25 m. The results show spatial patterns that are consistent with the topographical features as well as with a reference product. Being able to also reproduce interannual variability, the method has great potential for hydrological and ecological applications.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Cited articles
Anderson, G., Clough, S.,
Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric
constituent profiles (0–120 km), Hansom AFB,
Bedford, MA, 1986.
Aoki, T., Aoki, T., Fukabori, M.,
Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow
physical parameters on spectral albedo and bidirectional reflectance
of snow surface, J. Geophys. Res., 105, 10219–10236, 2000.
Augustine, J. A.,
DeLuisi, J. J., and Long, C. N.: Surfrad – a national surface
radiation budget network for atmospheric resarch,
B. Am. Meteorol. Soc., 81, 2341–2357, 2000.
Bais, A. F., Kazadzis, S.,
Balis, D., Zerefos, C. S., and Blumthaler, M.: Correcting global
solar ultraviolet spectra recorded by a brewer spectroradiometer for
its angular response error, Appl. Optics, 37, 6339–6444, 1998.
Bernhard, G. and
Seckmeyer, G.: Uncertainty of measurements of spectral solar UV
irradiance, J. Geophys. Res., 104, 14321–14345, 1999.
Buras, R., Dowling, T., and
Emde, C.: New secondary-scattering correction in DISORT with
increased efficiency for forward
scattering, J. Quant. Spectrosc. Ra., 112, 2028–2034,
2011.
Dahlback, A. and
Stamnes, K.: A new spherical model for computing the radiation field
available for photolysis and heating at twilight, Planet. Space
Sci., 39, 671–683, 1991.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U.,
Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The
libRadtran software package for radiative transfer calculations (Version
2.0), Geosci. Model Dev. Discuss., 8, 10237–10303,
https://doi.org/10.5194/gmdd-8-10237-2015, 2015.
Gardner, A. S. and
Sharp, M. J.: A review of snow and ice albedo and the development of
a new physically based broadband albedo
parameterization, J. Geophys. Res., 115, 1–15,
2010.
Grenfell, T. C.,
Warren, S. G., and Mullen, P. C.: Reflection of solar radiation by
the Antarctic snow surface at ultraviolet, visible, and
near-infrared wavelengths, J. Geophys. Res., 99, 18669–18684,
1994.
Hu, Y. X. and K. Stamnes.:
An accurate parameterization of the radiative properties of water
clouds suitable for use in climate models,
J. Climate, 6, 728–742, 1993.
Kato, S., Ackerman, T. P.,
Mather, J. H. and Clothiaux, E. E.: The k-distribution method and
correlated-k approximation for a shortwave radiative transfer
model, J. Quant. Spectrosc. Ra., 62, 109–121,
1999.
Key, J. R., Yang, P., Baum, B. A., and Nasiri, S. L.: Parameterization of
shortwave ice cloud optical properties for various particle habits, J.
Geophys. Res., 107, D13, https://doi.org/10.1029/2001JD000742, 2002.
Klein, A. G., and
Stroeve, J.: Development and validation of a snow albedo algorithm
for the MODIS instrument, Ann. Glaciol., 34, 45–52,
2002.
Kreuter, A., Buras, R., Mayer, B., Webb, A., Kift, R., Bais, A., Kouremeti, N.,
and Blumthaler, M.: Solar irradiance in the heterogeneous albedo environment
of the Arctic coast: measurements and a 3-D model study, Atmos.
Chem. Phys., 14, 5989–6002, https://doi.org/10.5194/acp-14-5989-2014, 2014.
Liang, S.: Narrowband to broadband
conversions of land surface albedo I Algorithms, Remote
Sens. Environ., 76, 213–238, 2001.
Long, C. N., Bucholtz, A.,
Jonsson, H., Schmid, H., Vogelmann, A., and Wood, J.: A method of
correcting for tilt from horizontal in downwelling shortwave
irradiance measurements on moving platforms, Open Atmos.
Sci. J., 4, 78–87, 2010.
Mayer, B. and Kylling, A.:
Technical note: The libRadtran software package for radiative
transfer calculations – description and examples of use,
Atmos. Chem. Phys., 5, 1855–1877,
2005.
Nicolaus, M.,
Hudson, S. R., Gerland, S., and Munderloh, K.: A modern concept for
autonomous and continuous measurements of spectral albedo and
transmittance of sea ice, Cold Reg. Sci. Technol., 62, 14–28,
2010.
Oerlemans, J. and
Klok, E. J.: Energy balance of a glacier surface: analysis of
automatic weather station data from the Morteratschgletscher,
Switzerland, Arct. Antarct. Alp. Res., 34, 477–485,
2002.
Perovich, D. K.,
Grenfell, T. C., Light, B., and Hobbs, P. V.: Seasonal evolution of
the albedo of multiyear Arctic sea ice, J. Geophys. Res., 107,
1–13,
2002.
Sellers, P. J.,
Meeson, B. W., Hall, F. G., Asrar, G., Murphy, R. E.,
Schiffer, R. A., Bretherton, F. P., Dickinson, R. E.,
Ellingson, R. G., Field, C. B., Huemmrich, K. F., Justice, C. O.,
Melack, J. M., Roulet, N. T., Schimel, D. S., and Try, P. D.: Remote
sensing of the land surface for studies of global change: models –
algorithms – experiments, Remote Sens. Environ., 51, 3–26,
1995.
Stamnes, K.,
Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete–ordinate–method radiative transfer in
multiple scattering and emitting layered media, Appl. Optics, 27,
2502–2509, 1988.
Stamnes, K., Slusser, J.,
and Bowen, M.: Derivation of total ozone abundance and cloud
effects from spectral irradiance measurements, Appl. Opt., 30,
4418–4426, 1991.
Steffen, K. and Box, J.:
Surface climatology of the Greenland ice sheet: Greenland climate
network 1995–1999, J. Geophys. Res., 106, 33951–33964, 2001.
Stroeve, J.-C., Nolin, A.,
and Steffen, K.: Comparison of AVHRR-derived and in situ surface
albedo over the Greenland Ice Sheet, Remote Sens. Environ., 62,
262–276, 1997.
Stroeve, J.-C.,
Box, J. E., Fowler, C., Haran, T., and Key, J.: Intercomparison
between in situ and AVHRR polar pathfinder-derived surface albedo
over greenland, Remote Sens. Environ., 75, 360–374, 2001.
Stroeve, J.-C., Box, J. E.,
Gao, F., Liang, S., Nolin, A., and Schaaf, C.: Accuracy assessment
of the MODIS 16-day albedo product for snow: comparisons with
Greenland in situ measurements, Remote Sens. Environ., 94, 46–60,
2005.
Stroeve, J.-C., Box, J. E.,
and Haran, T.: Evaluation of the MODIS (MOD10A1) daily snow albedo
product over the Greenland ice sheet, Remote Sens. Environ., 105,
155–171, 2006.
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., and Barrett, A.: Re-evaluation
of {MODIS} {MCD43} Greenland albedo accuracy and trends, Remote Sens.
Environ., 138, 199–214,
2013.
Svacina, N. A., Duguay, C. R. and King,J. M. L.: Modelled and
satellite-derived surface albedo of lake ice – Part II: evaluation of
MODIS albedo products, Hydrol. Proc., 28, 4562–4572, 2014.
van Angelen, J. H.,
Lenaerts, J. T. M., Lhermitte, S., Fettweis, X.,
Kuipers Munneke, P., van den Broeke, M. R., van Meijgaard, E., and
Smeets, C. J. P. P.: Sensitivity of Greenland Ice Sheet surface mass
balance to surface albedo parameterization: a study with a regional
climate model, The Cryosphere, 6, 1175–1186,
https://doi.org/10.5194/tc-6-1175-2012, 2012.
Van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the Melville Bay region of northwest Greenland,
J. Glaciol., 57, 208–220, 2011.
Van de Wal, R. S. W.,
Greuell, W., Van den Broeke, M. R., Reijmer, C. H., and
Oerlemans, J.: Surface mass-balance observations and automatic
weather station data along a transect near Kangerlussuaq, West
Greenland, Ann. Glaciol., 42, 311–316, 2005.
Van den Broeke, M., Van
As, D., Reijmer, C., and Van de Wal, R.: Assessing and improving the
quality of unattended radiation observations in
Antarctica, J. Atmos. Ocean. Tech., 21, 1417–1431,
2004a.
Van den Broeke, M., Reijmer, C., and van de Wal, R.: Surface radiation
balance in Antarctica as measured with automatic weather stations, J.
Geophys. Res., 109, D09103, https://doi.org/10.1029/2003JD004394, 2004b.
Wang, W., Zender, C. S., van As, D., Smeets, P. C. J. P., and van den Broeke,
M. R.: A Retrospective, Iterative, Geometry-Based (RIGB) tilt correction
method for radiation observed by Automatic Weather Stations on snow-covered
surfaces: application to Greenland, The Cryosphere Discuss., 9, 6025–6060, https://doi.org/10.5194/tcd-9-6025-2015, 2015.
Weiser, U., Olefs, M., Schöner, W., Weyss, G., and Hynek, B.: Correction of
albedo measurements due to unknown geometry, The Cryosphere Discuss., 9, 2709–2744, https://doi.org/10.5194/tcd-9-2709-2015, 2015.
Wiscombe, W. J. and
Warren, S. G.: A model for the spectral albedo of snow – Part I: Pure
snow, J. Atmos. Sci., 37, 2712–2733, 1980.
Short summary
The magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance is evaluated. It is shown that relatively minor sensor misalignments give significant errors in irradiance and hence albedo measurements. The total measurement error introduced by sensor tilt is dominated by the direct component. Significant measurement error can also persist in integrated daily irradiance and albedo.
The magnitude and makeup of error in cryospheric radiation observations due to small sensor...