Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-287-2016
https://doi.org/10.5194/tc-10-287-2016
Research article
 | 
05 Feb 2016
Research article |  | 05 Feb 2016

Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wenli Wang on behalf of the Authors (22 Sep 2015)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (10 Oct 2015) by Tingjun Zhang (deceased)
RR by Anonymous Referee #1 (23 Oct 2015)
ED: Publish as is (11 Jan 2016) by Tingjun Zhang (deceased)
AR by Wenli Wang on behalf of the Authors (20 Jan 2016)
Download
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).

We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.