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Abstract  8 

We perform a land surface model intercomparison to investigate how the simulation of 9 

permafrost area on the Tibetan Plateau (TP) varies among 6 modern stand-alone land 10 

surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also 11 

examine the variability in simulated permafrost area and distribution introduced by 5 12 

different methods of diagnosing permafrost (from modeled monthly ground 13 

temperature, mean annual ground and air temperatures, air and surface frost indexes). 14 

There is good agreement (99 to 135 ×10
4 

km
2
) between the two diagnostic methods 15 

based on air temperature which are also consistent with the observation-based estimate 16 

of actual permafrost area (101 ×10
4 

km
2
). However the uncertainty (1 to 128 ×10

4 
km

2
) 17 

using the three methods that require simulation of ground temperature is much greater. 18 

Moreover simulated permafrost distribution on TP is generally only fair to poor for 19 

these three methods (diagnosis of permafrost from monthly, and mean annual ground 20 

temperature, and surface frost index), while permafrost distribution using air 21 

temperature based methods is generally good. Model evaluation at field sites highlights 22 

specific problems in process simulations likely related to soil texture specification, 23 

vegetation types and snow cover. Models are particularly poor at simulating permafrost 24 

distribution using the definition that soil temperature remains at or below 0
o
C for 24 25 

consecutive months, which requires reliable simulation of both mean annual ground 26 

temperatures and seasonal cycle, and hence is relatively demanding. Although models 27 
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can produce better permafrost maps using mean annual ground temperature and surface 1 

frost index, analysis of simulated soil temperature profiles reveals substantial biases. 2 

The current generation of land surface models need to reduce biases in simulated soil 3 

temperature profiles before reliable contemporary permafrost maps and predictions of 4 

changes in permafrost distribution can be made for the Tibetan Plateau. 5 

 6 

1 Introduction 7 

The Tibetan Plateau (TP) has the highest and largest low-latitude frozen ground in the 8 

world, with more than 50% of its area occupied by permafrost (Zhou et al., 2000). The 9 

unique geography and plateau climate make the permafrost on TP very different from 10 

the Arctic. The TP permafrost is warmer, with only discontinuous and sporadic 11 

permafrost (Zhou et al., 2000), has less underground ice (Ran et al., 2012), and has no 12 

large forests (Wu, 1980). The active layer thickness ranges from 1 m to 3 m, with some 13 

intensely degraded area reaching 4.5 m (Wu and Liu, 2004; Wu and Zhang, 2010; 14 

Zhang and Wu, 2012). Freeze/thaw cycles, and the extent of permafrost play an 15 

important role in the thermal state of TP. The underlying surface temperature contrast 16 

between TP and Indian Ocean is an important controlling factor for both the Asian 17 

monsoon and the wider general atmospheric circulation (Xin et al., 2012). As TP gets 18 

intensely warmer (IPCC, 2013; Wu et al., 2013), the impact of degraded permafrost on 19 

desertification (Li et al., 2014; Yang et al., 2010; Li et al., 2005), water cycling (Cheng 20 

and Jin, 2013; Yao et al., 2013), carbon budget (Dörfer et al., 2013; Wang et al., 2008; 21 

Schuur et al., 2008;), and infrastructure (Wu and Niu, 2013; Yu et al., 2013) has also 22 

become active research topics.  23 

 24 

Hence, the simulation of TP permafrost is motivated both by its global importance and 25 

by its unique properties. A number of land surface models (LSMs) (e.g., CLM4.0, 26 

CoLM, SHAW, Couple Model and FSM) have been applied at individual station 27 
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locations on TP to reproduce soil thermo-hydro dynamics (Li et al., 2009; Wang and 1 

Shi, 2007; Xiong et al., 2014; Zhang et al., 2012). Simulations of ground temperature 2 

and moisture variations are relatively realistic when using observed atmospheric 3 

forcing (Guo and Yang, 2010; Luo et al., 2008). The results were improved by setting 4 

appropriate permafrost parameters for soil organic matter contents and soil texture 5 

properties (Luo et al., 2008; Wang et al., 2007; Xiong et al., 2014). CLM4.0 has also 6 

been used to provide future projections of permafrost extent for the whole TP (Guo and 7 

Wang, 2013; Guo et al., 2012), and simulates 81% loss of permafrost area by the end of 8 

21st century under the A1B greenhouse gas emissions scenario. This raises the question 9 

of how reliable the estimate is in comparison with results from other models.  10 

 11 

Simulations of Northern Hemisphere (NH) permafrost area showed large differences 12 

amongst Coupled Model Inter-comparison Project (CMIP5) models (Koven et al., 2013; 13 

Slater and Lawrence, 2013). Moreover, different diagnostic methods, using either a 14 

direct method, which relies on model simulated ground temperatures, or indirect 15 

methods inferred from air temperatures and snow characteristics also lead to quite 16 

different permafrost areas. Slater and Lawrence (2013) applied two direct methods to 17 

nineteen CMIP5 models and found differences of up to 12.6×10
6 
km

2 
in diagnosed NH 18 

permafrost area. Saito (2013) showed that differences in pre-industrial NH continuous 19 

permafrost area between direct and indirect methods were around 3×10
6 

km
2
. This 20 

raises the question why different methods arrive at different estimates and which 21 

method is better suited. 22 

 23 

A reliable simulation of permafrost extent is important, since permafrost is a 24 

comprehensive reflection of soil thermo-hydro dynamics that is hard to measure 25 

directly except at sparse observational sites. Further, reliable present-day simulations 26 

can contribute to an increased confidence in simulations of future permafrost 27 
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degradation by these models. We note that this approach provides information on the 1 

ability of models on the warmer and physically unique TP permafrost in a NH 2 

simulation, hence providing some test of reliability for simulations of present and 3 

future global permafrost over TP. 4 

 5 

To date, an examination of the uncertainties in model-derived TP permafrost area has 6 

not been attempted. One way of estimating this uncertainty is to explore a single model 7 

and to perform a set of sensitivity experiments in which the model parameters are 8 

modified (e.g., Dankers et al., 2011; Essery et al., 2013; Gubler et al., 2013). An 9 

alternative approach is to explore an ensemble of multiple models where the 10 

uncertainty is discussed in terms of the spread among the models (e.g., Koven et al., 11 

2013; Slater and Lawrence, 2013). Here we follow the second approach and examine 12 

the uncertainty of TP permafrost simulations by an ensemble of 6 state-of-the-art 13 

stand-alone land-surface schemes. The models are from the Permafrost Carbon 14 

Network (PCN; http://www.permafrostcarbon.org/) and include a broad variety of 15 

snow and ground parameters and descriptions, along with a clear experimental design 16 

under prescribed observation-based atmospheric forcing. The first focus of our paper is 17 

therefore the quantification of the uncertainty in the simulated TP permafrost area due 18 

to the models‘ structural and parametric differences. Further, using time series of soil 19 

temperature from the few available TP stations, we discuss the biases in relation to the 20 

land surface model description (e.g. soil texture, vegetation and snow cover). We also 21 

discuss in the paper the uncertainty due to the different methods to diagnose the TP 22 

permafrost area, with 5 different (direct and indirect) methods.   23 

 24 

In section 2 we introduce the different methods used to derive permafrost extent for the 25 

TP from LSMs. Section 3 describes the applied model data, the observation-based 26 

estimate of TP permafrost map, the method to assess the agreement of simulated versus 27 

http://www.permafrostcarbon.org/
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observation- based estimate of permafrost maps permafrost maps, and ground 1 

temperature data to evaluate soil thermal profiles simulated by the models. Results and 2 

discussion are presented in sections 4 and 5, and conclusions are summarized in section 3 

6. 4 

 5 

2 Permafrost Diagnosis 6 

We make use of all five major permafrost diagnostic methods promoted in the literature 7 

(Slater and Lawrence, 2013; Guo et al., 2012; Guo and Wang, 2013; Wang et al., 2006; 8 

Wang, 2010; Nan et al., 2002; Nan et al., 2012; Saito, 2013; Ran et al., 2012; Wang et 9 

al., 2006; Jin et al., 2007; Xu et al., 2001; Nelson and Outcalt, 1987). Since the model 10 

intercomparison relies on LSMs that are all driven at monthly resolution, the methods 11 

we use are tailored, as usual, to reflect the forcing data resolution. The model-derived 12 

TP permafrost maps are shown in Figure 1. The modeling spatial domain is not 13 

consistent among the models. CLM4.5, CoLM, JULES and UVic cover the whole TP 14 

while others (ISBA, LPJ-GUESS) do not (Table 1). We mainly focus on the common 15 

modeling region (Figure 1) to discuss differences between models and methods, but 16 

also give the results for whole TP for the four models that produce them.  17 

In detail, the five methods are: 18 

 19 

1) Temperature in Soil Layers (TSL) 20 

The TSL method allows a direct diagnosis of permafrost from modeled soil temperature 21 

(Slater and Lawrence, 2013). The standard definition of permafrost is that ground 22 

remains at or below 0°C for at least two consecutive years. Many recent modeling 23 

studies (e.g., Guo et al., 2012; Guo and Wang, 2013; Slater and Lawrence, 2013 and 24 

references therein), have consistently adapted this for land surface and earth system 25 

models by defining a model grid cell as permafrost if the simulated ground temperature 26 

(of at least one level in the upper soil) remains at or below 0°C for at least 24 27 
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consecutive months. Furthermore, these model-based studies are limited by the 1 

maximum soil depth of the models (Table 1). Hence, we analyze the ground 2 

temperatures down to a depth of 3 m, which should be satisfactory as this range spans 3 

the observed active layer thickness on TP. Data at higher than monthly temporal 4 

resolution are not stored by the models in the PCN archive. Therefore TSL diagnosis is 5 

calculated from monthly mean soil temperatures, which has been previously 6 

demonstrated to be a viable substitute for model-based estimates of permafrost both on 7 

TP (Guo et al., 2012; Guo and Wang, 2013), and for the Arctic (Slater and Lawrence, 8 

2013). 9 

 10 

2) Mean Annual Ground Temperature (MAGT) 11 

Permafrost is detected if the mean annual ground temperature at the depth of zero 12 

annual amplitude is at or below 0°C (Slater and Lawrence, 2013). Some papers use a 13 

slightly higher critical temperature, e.g. 0.5°C (Wang et al., 2006; Wang, 2010; Nan et 14 

al., 2002), which has been found to fit TP observations well. Slater and Lawrence (2013) 15 

suggested MAGT as an indicator of deeper permafrost. The problem with this 16 

definition is that many models have quite shallow soil depth (Table 1), and of course, 17 

zero amplitude would require great (actually infinite in steady state) soil depth. For 18 

practical purposes, we use MAGT at 3 m depth (the approximate base of the active 19 

layer) and the common critical temperature of 0°C. Although annual ground 20 

temperature amplitudes at 3 m depth are still several degrees, they are much smaller 21 

than the amplitudes in upper layers (section 4.3). We investigated one model with a 22 

larger depth range (CLM4.5; Table 1) in more detail, but found that the results using 23 

MAGT at 38 m depth do not significantly change the derived permafrost area.  24 

 25 

3) Surface frost index (SFI) 26 

Originally, Nelson and Outcalt (1987) introduced the surface frost index SFI
*
, also used 27 
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in Slater and Lawrence (2013): 1 

*

*

*

a

a a

DDF
SFI

DDF DDT



 (1),  2 

Where *

aDDF and aDDT are the annual freezing and thawing degree-day sums, both 3 

calculated using air temperature (indicated by a subscripts), and with *

aDDF further 4 

modified to correct for the insulating effect of snow cover (indicated by the 5 

*superscript). In this way, *SFI is designed to reflect the ground surface thermal 6 

conditions by combining snow insulation effect with air temperature. However, the 7 

snow insulation effect alone can not account for the soil structure complexity. So here 8 

we calculate surface frost index directly from the ground surface temperature (indicated 9 

by s subscripts) (Nan et al., 2012), using an asymmetric sinusoidal annual temperature 10 

cycle fitted to the warmest and coldest monthly temperatures ( hT , cT ) and a frost angle 11 

(  ) (Nan et al., 2012): 12 

1

( ) ( )sin
1

( )( ) ( )sin

s

s s h c h c

h c h c

DDF
SFI

DDF DDT T T T T

T T T T

 

  

 
   


   

        

(2), 13 

Nan et al. (2012) report good results using this surface frost index on TP with values of 14 

SFI ≥ 0.5 to indicate permafrost. 15 

 16 

4) Air frost index (F) 17 

Nelson (1987) calculated F from an equation analogous to (2), but using monthly air 18 

temperature rather than ground surface temperatures. Where F ≥  0.5 defines 19 

permafrost. We follow suit and use F to assess the effects of air temperature forcing. 20 

Although many authors have criticized F as a permafrost indicator, F has been used in 21 

recent work, though in modified forms. For example, Saito (2013) calculated mean 22 

annual air temperature (MAAT) as ( ) 365a aMAAT DDT DDF  , where aDDT  23 
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and aDDF , are thawing index and freezing index as defined earlier which means that 1 

MAAT in Saito (2013) is a proxy for F.  2 

 3 

5) Mean Annual Air Temperature (MAAT) 4 

A critical value of MAAT is often used to derive the southern boundary of permafrost 5 

(Ran et al., 2012; Wang et al., 2006; Jin et al., 2007). The -2°C isotherm of MAAT has 6 

been found to fit well with TP observation- based permafrost maps (Xu et al., 2001). 7 

MAAT has been used to compare the air temperature based permafrost area with 8 

permafrost areas derived by other methods (Koven et al., 2013; Saito et al., 2013). Note 9 

that the calculation method of MAAT in Saito et al. (2013) is slightly different from that 10 

used in other works. Here we calculated MAAT traditionally, as the average of 12 11 

monthly 2 m air temperatures. 12 

 13 

All the 5 diagnostic methods are summarized in Table 2. The three direct methods (TSL, 14 

MAGT, SFI) are based on simulated ground temperatures, while the two indirect 15 

methods (F and MAAT) use the prescribed air temperature. SFI is mainly controlled by 16 

air temperature and snow cover, but it also depends on how the soil is parameterized, so 17 

SFI is somewhat closer to the indirect methods than are TSL and MAGT.  18 

 19 

The 3 methods introduced in the 1980s (SFI, F, MAAT), were designed to map 20 

permafrost based on the assumption that the permafrost distribution is related to 21 

climatic parameters. Although permafrost processes are directly represented in climate 22 

models nowadays, the simulated soil temperatures have considerable errors, and the 23 

directly diagnosed permafrost area has model-dependent biases (Koven et al., 2013; 24 

Slater and Lawrence, 2013). Therefore the older indirect diagnostic methods are also 25 

still very commonly used (e.g., Wang et al., 2006; Jin et al., 2007; Ran et al., 2012; Nan 26 
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et al., 2012; Slater and Lawrence, 2013; Saito, 2013; Koven et al., 2013). TP permafrost 1 

area directly diagnosed from the simulated monthly soil temperatures (TSL) is not 2 

superior to the other methods in comparison with the observation-derived permafrost 3 

map (Figures 1 and 2). Hence, we consider all the 5 diagnostic methods to quantify the 4 

full range of uncertainty in the model-derived permafrost maps. 5 

 6 

Since the forcing air temperatures of LSMs were not the same due to discrepancies in 7 

the historical temperature (and precipitation and other forcing fields) datasets used by 8 

the individual models (Table 1), we use the indirect methods to quantify forcing 9 

differences. If these differences are not too large, we can attribute the differences in the 10 

direct method-derived permafrost areas primarily to differences of modeled land 11 

surface processes. Across-model and across-method variability is listed in Table 3. As 12 

we use fairly small numbers of methods and models, rather than defining uncertainty in 13 

terms of standard deviation, we choose to use the full range of values from the 14 

simulations and define uncertainty as maximum-minimum values among the models. 15 

 16 

3 Data and Analysis Approach 17 

3.1 Data from stand-alone LSMs 18 

Output from six stand-alone LSMs participating in the inter-model comparison project 19 

―Vulnerability of Permafrost Carbon to Climate Change‖ 20 

(http://www.permafrostcarbon.org/) is analyzed in this study (Table 1). The simulations 21 

have been generally conducted for recent decades from 1960 to 2009 using monthly 22 

resolution climate forcing input data. Each modeling team was free to choose 23 

appropriate driving data sets for climate, atmospheric CO2, N deposition, disturbance, 24 

soil texture, etc., as used in their standard modeling system. Model spin-ups are also 25 

different, but they are long enough (around 1 000 years) to ensure that the deep carbon 26 

is in equilibrium. The LSMs use different horizontal model resolutions and different 27 

http://www.permafrostcarbon.org/
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soil layer divisions (Table 1).  1 

 2 

Our analysis is based on monthly averages of the driving air temperature and simulated 3 

ground temperature. As three models (CoLM, JULES and LPJ-GUESS; Table 1) have 4 

shallow soil layers, we restrict our analysis to the common depth range spanning near 5 

surface to 3 m. Ground temperatures were linearly interpolated onto the common 6 

depths: 0.05, 0.1, 0.2, 0.5, 1, 2, 3 m. Since there is no ground surface temperature output, 7 

we linearly extrapolate the  top two layers' soil temperatures onto the ground surface. 8 

For CLM4.5, CoLM, ISBA and LPJ-GUESS, the first layer soil depth is no deeper than 9 

0.01 m and the second layer soil depth is no deeper than 0.05 m. For JULES and UVic, 10 

the first layer soil depth is 0.05 m and the second layer soil depth is no deeper than 0.18 11 

m. Most TP permafrost work has been post-1980 (Guo and Wang, 2013; Nan et al., 12 

2012), so we choose 1980 as the start of the analysis period. The end is limited to the 13 

year 2000 by results from the JULES model (Table 1).  14 

 15 

The LSMs in this study considered the following processes: dynamic vegetation, 16 

carbon cycling (Rawlins et al., 2015), snow, near-surface hydrological budget, soil 17 

thermal dynamics (Peng et al., 2015) and the treatment of freezing soil. Sophistication 18 

in the treatment of these processes varies amongst the models with each having specific 19 

parameterizations, In this study we investigate some key schemes and parameters that 20 

are important for permafrost simulation: 1) Unfrozen water / phase change. All models 21 

calculate soil thermal properties as a function of soil moisture and consider the phase 22 

change of water/ice, but CoLM and LPJ-GUESS do not consider transformation to ice 23 

of water solute mixtures below 0°C, which is a key feature in soil freezing and thawing. 24 

2) Surface organic layer insulation. Only CLM4.5 and ISBA consider the insulating 25 

effect of  moss. 3) Soil texture parameterization. The specified fraction of clay and sand 26 

in soil differs. LPJ-GUESS specifies the same soil texture for the TP as for the Arctic. 4) 27 



12 
 

Organic soil fraction treatment. The organic content of soil differs among the models. 1 

LPJ-GUESS sets the same value for TP as for the more organically rich permafrost of 2 

the Arctic. 5) Snow processes. ISBA, LPJ-GUESS and UVic set static snow layers. 3 

UVic uses an implicit snow scheme while LPJ-GUESS uses the Bulk-layer scheme, 4 

which are both simpler than the dynamic multi-layer snow scheme of some other land 5 

models. 6 

 7 

3.2 TP permafrost observation-based map 8 

Mapping permafrost on TP is challenging due to absence of field observations, 9 

especially in the central and western parts where permafrost is widespread. In practice, 10 

permafrost maps on TP have been statistical models based on a compilation of earlier 11 

maps, aerial photographs, Landsat images and terrain analysis (Ran et al., 2012; Shi et 12 

al., 1988; Li and Cheng, 1996; Nan et al., 2002) as well as on some MAGT and MAAT 13 

data from the few long-term monitoring sites (Ran et al., 2012; Wang et al., 2006). The 14 

classification and therefore the mapping of TP permafrost is not consistent across the 15 

different studies (Ran et al., 2012). Thus there is a large spread of observation-based TP 16 

permafrost area estimates from 110 × 10
4
 km

2
 (Wang et al., 2006) to 150 × 10

4
 km

2
 (Shi 17 

and Mi, 1988; Li and Cheng, 1996). 18 

 19 

The mostly widely used map by Li and Cheng (1996) has large differences from other 20 

maps, and shows excess permafrost in the southeast where permafrost can only exist on 21 

extremely cold mountains (Gruber, 2012). The International Permafrost Association 22 

(IPA) map (Brown et al., 1997; Heginbottom, 2002) is the most widely used in NH 23 

permafrost analysis. However, the IPA map is not well suited for TP because the data 24 

and information in this map is based on the map made by Shi et al. (1988) which has not 25 

been updated since. 26 

 27 
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We use the 1 : 4,000,000 Map of the Glaciers, Frozen Ground and Deserts in China 1 

(Wang et al., 2006, hereafter refered to as the ―Wang06 map‖) as the primary reference. 2 

The map is based on MAGT (Nan et al., 2002) with 0.5°C as the boundary between 3 

permafrost and seasonally frozen ground. Nan (2002) fitted a multiple linear regression 4 

between latitude, altitude and MAGT, from all 76 TP stations having borehole data, and 5 

extrapolated this regression to the whole TP with a 1 km resolution DEM to get the 6 

MAGT distribution. The Wang06 map was re-gridded to match the different model 7 

resolutions and spatial domain (see ―Wang06 map‖ column in Figure 1), and the 8 

different permafrost areas derived from the methods and models are compared with the 9 

Wang06 map in Figure 2.  10 

 11 

We emphasize that the Wang06 map is subject to uncertainty as it is based on a 12 

relatively sparse set of observations and then statistical extrapolation. Nan et al. (2013) 13 

pointed out that permafrost was overestimated in the western TP in both the maps by Li 14 

and Cheng (1996) and Wang et al. (2006). However, a better permafrost map covering 15 

the whole TP is not available. 16 

 17 

3.3 Measure of agreement between simulated and Wang06 permafrost 18 

maps 19 

To evaluate the agreement of simulated permafrost map with the Wang06 map, we 20 

calculate the Kappa coefficient (Cohen, 1960; Monserud and Leemans, 1992; Wang, 21 

2010), K, which measures the degree of agreement between two maps.  22 

1 1 0 0
2

1 1 0 0
2

( )
( )

( )
(1 )

a b a bs
n nK

a b a b

n








          

(3) 23 

Where the total number of the map points is n , and s  is the number of points where 24 

simulation and observational estimate agree. The numbers of Wang06 map cells with 25 
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permafrost is 
1a , and those without are 0a , and the corresponding simulated map cell 1 

numbers are 1b  and 0b . The calculated K matrix of simulated and Wang06 permafrost 2 

maps is presented in Figure 3. Empirically and statistically arbitrary quality values for 3 

K have been proposed, e.g. Cohen (1960) suggested that K ≥ 0.8 signifies excellent 4 

agreement, 0.6 ≤ K < 0.8 represents substantial agreement, 0.4 ≤ K < 0.6 represents 5 

moderate agreement, 0.2 ≤ K < 0.4 represents fair agreement, while lack of agreement 6 

corresponds to K < 0.2. There is a sample size issue in estimating the confidence of K 7 

and this can be a factor when very small numbers of grid points are available (here this 8 

applies to UVic). 9 

 10 

3.4 Data used to examine model thermal structures 11 

The derived permafrost maps depend on the modeled ground thermal structures. 12 

However, field studies on TP are quite limited, and we have only short duration 13 

(1996-2000) ground temperature profiles obtained from the GEWEX Asian Monsoon 14 

Experiment (GAME)-Tibet (Yang et al., 2003) at three permafrost stations (D66, D105, 15 

D110; Figure 1) in the central TP to compare with model results. The three stations are 16 

located along the Qinghai-Tibet Highway. D66 station is in the front edge of alluvial 17 

fan, with almost no vegetation. The soil is mainly composed of gravels, sands and 18 

pebbles. D110 is in the southern bank of ZhaJiaZangBu River. The ground is a wetland 19 

covered with short-stature emergent vegetation. The upper layer soil is composed of 20 

coarse and fine sand. The lower soil layer is mainly composed of fine sand. D105 is in 21 

the northern side of the Tanggula Mountain range. The ground surface is relatively flat, 22 

covered with plateau meadow. The soil is composed of both coarse and fine sand. The 23 

vertical profile of observed soil temperature of D66 extends from 0.04 m to 2.63 m, of 24 

D110 from 0.04 m to 1.8 m, and of D105 from 0 to 3 m. However the data continuity of 25 

the top layer temperature in D105 is not good. To examine modeled ground 26 

temperatures, we present the top (0.04 m) and deeper (2.63 m or 3 m) soil layer 27 
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temperatures (modeled temperatures were weighted bi-linear interpolated onto the 1 

station locations) in Figure 4 and Table 4. We also give a short description of the sites 2 

vegetation and soil texture information, both from observation and models. 3 

 4 

We also analyze monthly air and ground temperatures in a selected area in the western 5 

TP (33°- 36°N, 82.5°- 85.5°E, Figure 1) to examine across-model differences 6 

(Figure 5). The air temperature is also different among the models, especially in winter 7 

season, though the differences are much smaller than soil temperatures differences. As 8 

this region is the coldest part of TP (according to the annual mean air temperature) the 9 

permafrost is widely distributed, and the active layer thickness is less than 3 m. 10 

However, TSL method derived permafrost areas vary significantly among the models in 11 

this area (Figure 1). Despite the lack of any ground temperature observations in this 12 

area, the definite presence of permafrost makes it useful to look at the ground thermal 13 

structure of each model as well as their differences as a means of interpreting the 14 

calculated permafrost areas. 15 

 16 

4 Results and Discussion 17 

4.1  Uncertainties in air-temperature-derived permafrost area 18 

Air temperature–derived permafrost maps are investigated with the two indirect 19 

methods, F and MAAT. Figures 1 and 2 compare both Wang06 and model-derived 20 

permafrost maps, and show that F produces consistently excessive permafrost area 21 

compared with MAAT. That is because the empirical threshold of -2°C for MAAT fits 22 

well with TP observations (Xu et al., 2001), while F ≥ 0.5 is a theoretical assumption, 23 

which has been reported to overestimate permafrost area (Nelson and Outcalt, 1987; 24 

Slater and Lawrence, 2013). Accordingly, Figure 3 shows that F-derived permafrost is 25 

less consistent with  Wang06 map (model average K = 0.3 for the common region) than 26 

MAAT-derived permafrost area (K = 0.5). 27 
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 1 

Across-model variability (Table 3) for the MAAT-based method is 14×10
4 
km

2
 and for 2 

the F-based method is 17×10
4 

km
2
, equivalent to about 14 % ~ 17 % of the Wang06 3 

permafrost area inside the common modeling region (101×10
4 
km

2
). This variability is 4 

much smaller than the 56% calculated by Slater and Lawrence (2013) for the CMIP5 5 

models with the SFI
*
 method for NH permafrost area. The relatively smaller difference 6 

among the models here is because, although the temperature forcing was not identical 7 

among models, the mean annual air temperature and its spatial variability in the 8 

permafrost region are quite similar (between -6°C and -8°C). Since the differences in 9 

permafrost extent using the air temperature based indirect methods are relatively small, 10 

the differences in the direct method derived extents can primarily be attributed to the 11 

LSMs structural and parametric differences. 12 

 13 

4.2 Uncertainties in model–derived permafrost area 14 

There is a large across-model variability of permafrost area derived from direct 15 

methods (TSL, MAGT and SFI) (Figures 1, 2; 111~120×10
4 

km
2
; Table 3) and it is 16 

similar for all the 3 diagnosis methods. This across-model variability is much larger 17 

than the variability using the indirect methods discussed in Section 4.1, and is 18 

equivalent to 110-112% of Wang06 permafrost area for the common modeling region. 19 

CMIP5 across-model variability derived from TSL in NH permafrost area was similarly 20 

large (Slater and Lawrence, 2013; Koven 2013). Clearly this points to large 21 

across-model differences in ground thermal structures.  22 

 23 

The across-method (TSL, MAGT and SFI) variability in permafrost area (Figures 1, 2; 24 

Table 3) is very variable between models: UVic and LPJ-GUESS have smallest ranges 25 

(up to 9 x 10
4
 km

2
), while CoLM has the largest (87×10

4 
km

2
) (Table 3), near to the 26 

total permafrost area of the common region. Thus the across-direct method range is 27 
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similar to the across-model range. Slater and Lawrence (2013) also emphasized the 1 

variable across-method variability for NH permafrost area between models, however 2 

Saito (2013) showed insignificant variability across both direct and indirect methods 3 

for derived pre-industrial NH continuous permafrost area. 4 

 5 

4.3 Model evaluation based on K and ground temperature profile 6 

A good land surface model should adequately simulate the seasonal and annual ground 7 

temperature profiles. Hence one quality test for a model is that it should be able to 8 

produce ‗good‘ permafrost maps, which we define as agreement with the 9 

observation-based map, based on all the three direct diagnostic methods. The applied 10 

criterion is the kappa coefficient K (section 3.3), and we limit discussion to the K 11 

associated with TSL, MAGT and SFI, which are calculated with simulated soil 12 

temperatures. If we take the (arbitrary) threshold K ≥ 0.4 (indicating ―moderate 13 

agreement‖), then no model passes this test for the common simulation region, while 14 

reducing the threshold to K ≥ 0.2 (―fair agreement‖) allows most models and methods 15 

to pass while UVic stands out as a clear failure (Figure 3).  16 

 17 

If the criterion for acceptable model bias is ≤ ±2.0°C, then simulations of mean annual 18 

ground temperatures from most models (CLM4.5, CoLM, ISBA and JULES) agree 19 

with the observations, but only the simulation of seasonal cycle amplitude of one model 20 

(ISBA)  is consistent with the limited observations. However, if the criterion is bias ≤ 21 

±1.0°C, then no model agrees with observations for neither mean annual ground 22 

temperature nor the seasonal cycle amplitude (Figure 4, Table 4).  23 

 24 

We now look at the performance of the 2 models with larger biases in mean annual 25 

ground temperature: LPJ-GUESS and UVic. LPJ-GUESS simulated too cold (by more 26 

than 3°C) mean annual ground temperatures for both the surface and deeper layers 27 
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(Figure 4, Table 4). The summer temperatures simulated by the model in the surface 1 

layers are especially cold, with maximum temperatures lower than observation by 8°C 2 

(Figures 4a, c) and its ground temperature amplitude is substantially underestimated 3 

(Table 4), which must greatly limit the summer thaw depth. This cold soil results in 4 

substantial overestimation of permafrost area (119 ~ 131×10
4 

km
2
; Table 3, Figure 2) 5 

with small across-method variability. 6 

 7 

UVic simulates a soil thermal state that is the warmest among the models, with the 8 

simulated mean annual ground temperature at D66 surpassing observation by more 9 

than 7°C (Figure 4, Table 4). If the observational sites are representative then the 10 

generally too warm ground temperature in UVic is the reason for the extremely small 11 

simulated permafrost area (8× 10
4 

km
2
; Table 3, Figure 2) with all direct methods, and 12 

hence to no across-method variability, and poor agreement with the Wang06 permafrost 13 

map (K < 0.1; Figure 3). 14 

 15 

4.4 Method comparison based on K and ground temperature profile  16 

Permafrost maps derived using MAGT and SFI often show larger area than TSL 17 

(Figure 2), with generally better agreement with the Wang06 map (Figure 3). The 18 

MAGT method simply defines a grid as permafrost as long as its 3 m mean annual 19 

ground temperature is colder than 0°C, and a permafrost threshold value of SFI ≥ 0.5 20 

also only requires the mean annual ground surface temperature is lower than 0°C (Nan, 21 

2012). Figure 4 and Figure 5 show most models meet these criteria. However, assuming 22 

that the site observations are representative, the simulated mean annual ground 23 

temperatures of both surface and deeper soil layers often have obvious biases (≥ ±1°C) 24 

in all the models (Figure 4 and Table 4).  25 

 26 

In general, model-derived permafrost distribution using the TSL method shows little 27 
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agreement with the Wang06 map (Figures 1 - 3). In contrast with MAGT and SFI 1 

methods, the TSL method requires adequate simulation of both mean annual ground 2 

temperature and the seasonal cycle at monthly resolution (Figure 4, Table 4). This 3 

means that the TSL method is more susceptible to model errors, but it offers a more 4 

comprehensive insight into land model processes. CoLM is an extreme example of how 5 

a simulated permafrost map can be totally incorrect due to small errors in seasonal 6 

ground temperature. CoLM simulates nearly no TSL -derived permafrost (Figures 1, 2), 7 

accounting for much of the large across-model and across-method variability (Table 3). 8 

We investigate both the air and ground temperature (Figure 5) of the selected region 9 

(the region shown in Figure 1), which is the coldest part of TP and should be permafrost. 10 

CoLM simulates no permafrost in the selected region despite CoLM having lower 11 

mean annual ground temperatures for the 3 m layer than many other models (ISBA, 12 

CLM4.5 and JULES) (Figure 5). However, CoLM simulates a larger seasonal 13 

amplitude than CLM4.5 and ISBA (Figure 5), so that, in the western TP, the monthly 14 

maximum 3 m ground temperatures in CoLM always surpasses 0°C by around 0.2°C 15 

(Figure 5c) precluding it being classified as permafrost with the TSL method.  16 

 17 

5 Main processes causing ground temperature discrepancies  18 

As discussed in Sect. 4, the most noticeable ground temperature discrepancies among 19 

the 6 models are the underestimation of soil temperature by LPJ-GUESS and the 20 

overestimation of soil temperature by UVic, which lead to the largest biases in 21 

simulated permafrost area. There are many other, rather subtle, potential model 22 

discrepancies that we do not investigate in detail here. One example is the 23 

overestimation of the amplitude of the seasonal temperature cycle at deep depths in 24 

several models (Figures 4b and 4d; Table 4). Table 4 also shows that the observed 25 

vegetation and soil texture are mis-matched by all the models at each of the stations. 26 

Although it is a common problem to compare grid cell results against site data, model 27 

description of vegetation and soil texture is too simplified.  28 
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 1 

To help elucidate the causes of ground temperature discrepancies associated with soil 2 

processes we also inspect snow depth and vertical ground temperature gradients. We 3 

use the Long Time Series Snow Dataset of China (Che et al., 2008) 4 

(http://westdc.westgis.ac.cn) to examine the modeled snow depth. The complete 5 

dataset is composed of SMMR (1978-1987), SSM/I (1987-2008) and AMSR-E 6 

(2002-2010). According to Wang et al. (2013), the snow depth pattern and the 7 

significant seasonal snow characteristics of the satellite data are consistent with those 8 

of station data in most of our common TP region. The satellite data are different from 9 

station data on the southeast of TP (Wang et al., 2013), however, our analyzed common 10 

region does not include this part of TP. Thus this satellite data is reliable in this study. 11 

Here we use the data of SMMR and SSM/I to produce the winter (DJF) climatological 12 

distribution of 1980-2000 (Figure 6). Furthermore, we follow Koven et al. (2013) and 13 

calculated two vertical gradients to isolate processes: from the atmosphere to ground 14 

surface (Figure 7) and from ground surface to deeper soil (at 1 m depth) (Figure 8). 15 

While the first one is mainly controlled by the snow insulation, the latter is mainly 16 

determined by soil hydrology, latent heat and thermal properties. Important factors that 17 

influence the ground thermal structure are compared in Table 5. Since several models 18 

produce incomplete or not directly comparable output, we restrict ourselves to a 19 

qualitative assessment here.  20 

 21 

The LPJ-GUESS simulated underestimation of soil temperature is not caused by a bias 22 

in the surface air temperature forcing (Figure 5, Table 4). Instead, this bias may be due 23 

to many factors such as inappropriate prescriptions of soil thermal properties, poor 24 

representation of soil hydrology, mis-match of vegetation types, and weak coupling of 25 

soil water and vegetation cover. Figure 8 shows that the soil temperatures increase with 26 

depth, but LPJ-GUESS has a much smaller temperature gradient between the surface 27 

and the 1 m deep soil (0-2 K) than the other models. This suggests a different (larger) 28 

http://westdc.westgis.ac.cn/


21 
 

winter soil thermal conductivity probably associated with a high soil porosity and water 1 

content. LPJ-GUESS specifies the same soil texture for the TP as for the Arctic, which 2 

is mostly clay-like (Table 4). Clay has high water retention capacity. Many studies have 3 

reported that the soil on TP is immature, with coarser particles than typical for Arctic 4 

permafrost and with much less organic matter. Inappropriate soil texture classification 5 

will affect the simulated ground thermal structure. LPJ-GUESS underestimates the 6 

surface and top soil temperatures particularly in summer (Figures 4a, c, 5). 7 

Precipitation and hydrological processes determine the vertical profile of soil water 8 

content which can change the fraction of water and ice retained in different soil layers 9 

and influence soil thermal conduction. The energy required to melt the high water (ice) 10 

content in the surface soil layers in summer appears to lead to underestimated low 11 

summer temperatures compared with other models, and a phase lag in summer 12 

warming (Figures 4a and 4c). 13 

 14 

In addition, LPJ-GUESS shows a similarly thick snow depth in the western part of 15 

Tibetan Plateau as CLM4.5 and CoLM (Figure 6), but does not show as large surface a 16 

temperature offset as those two models (Figure 7). That is because LPJ-GUESS has a 17 

fixed snow density (362 kg/m
3
) which is higher than used in other models, and a 18 

relatively simple Bulk-layer snow scheme, with one static snow layer, unlike the 19 

dynamic multi-layer snow scheme of CLM4.5 and CoLM (Table 5). 20 

 21 

UVic uses the same climate forcing as CLM4.5 (Table 1), but simulates much warmer 22 

ground temperatures than other models. In contrast with the other models, UVic has no 23 

snow cover in winter (Figure 6), which is consistent with grid cell surface albedo being 24 

year-round at values between 0.15-0.35. The simulated snow depth is derived from the 25 

prescribed winter precipitation, and the model's snow, energy and water balances. The 26 

lack of snow over TP in UVic likely indicates removal by sublimation. A too low snow 27 



22 
 

albedo makes the snow gain energy that is lost through sublimation. Since it takes more 1 

energy to sublimate snow than it does to melt it, the latent heat flux should be, and is 2 

(not shown) higher in UVic than other models. However, despite the apparent snow 3 

sublimation - which should cool the soil, the ground surface temperatures in UVic are 4 

warmer than in all the models. The large absorption of short wave radiation allowed by 5 

the year-round low albedo provides this heat and is sufficient for there to be very little 6 

permafrost simulated by UVic for the TP.  7 

 8 

ISBA, and especially JULES stand out from other models in their calculated winter 9 

temperature offsets: ground surface temperatures are colder than the driving air 10 

temperatures over much of the simulated region (Figure 7). Snow (Figure 6) and 11 

vegetation cover would normally be expected to provide insulation, making soil 12 

warmer than air temperatures in winter. However, we observe that the snow depths 13 

from ISBA and JULES are not very thick (<10 cm) in most places on TP (Figure 6). 14 

Figure 9 shows the temperature offset between ground surface and air temperature as a 15 

function of snow depth. By inspection we note that there is different behavior for snow 16 

depths thinner and thicker than 4 cm. For snow depth > 4 cm, most negative offsets 17 

disappear in ISBA and JULES, which means that the ground surface temperature is 18 

warmer than air temperature for snow depth larger than 4 cm. For snow depth < 4 cm, 19 

the ground surface temperature of much of the region is colder than air temperature in 20 

ISBA and JULES, which indicates the cooling effect of thin snow. The very small or 21 

slightly negative temperature offset for thin snow is also seen in the other models. Of 22 

course, the strength of this effect depends on the individual model‘s 23 

simulation/parameterization of the snow processes (such as sublimation, evaporation, 24 

melting). The thin snow mechanism is also confirmed by the weak insulation effect in 25 

Figure 10.  26 

 27 
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6 Robustness of the results   1 

6.1 Choice of thresholds in the methdologies 2 

In Sect. 4 we used the most commonly applied threshold of each method, based on the 3 

empirical findings from previous studies, to compare models and methods. However, 4 

the thresholds themselves have the potential to affect the results. To reduce the latent 5 

uncertainties in terms of the methodologies, we also examine the sensitivity of 6 

permafrost area for different thresholds (Table 2), calculating changes in the permafrost 7 

area (Table 3) for a range of thresholds for each method (i.e., -3°C<MAAT<0°C; 8 

0.4<F<0.6; 0.4<SFI<0.6; 0°C<MAGT<0.5°C).  9 

 10 

Generally, when the permafrost definition requires colder climate, the derived 11 

permafrost area becomes smaller. The across-threshold uncertainty (Table 3) is similar 12 

for different models. But the across-threshold uncertainty with SFI varies greatly 13 

among models, 23 ~ 105×10
4 

km
2
, which is due to the seasonal amplitude of ground 14 

surface temperatures it requires. This is illustrated in Figure 5 where UVic and 15 

LPJ-GUESS have a relatively small seasonal amplitude of ground surface temperature, 16 

which corresponds to their small across-threshold variability for SFI derived area in 17 

Table 3. 18 

 19 

The across-model uncertainty is highly consistent even with different thresholds for 20 

each method (Table 3 final column). Thus it seems changing the thresholds does not 21 

affect one key point in our paper: that across-model uncertainties using direct methods 22 

are much larger than using indirect ones.  Large across-model uncertainties using direct 23 

methods imply that differences among these land surface processes are worthy of 24 

investigation. 25 

 26 
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6.2 Model settings 1 

The lowest soil boundary is a critical uncertainty affecting the simulation of permafrost 2 

(Nicolsky et al., 2007).  The common boundary of 3 m soil depth may produce 3 

uncertainties in the derived permafrost area. Three (CLM4.5, ISBA, UVic) of the six 4 

models extended the soil to deeper depths (Table 1), which provides insight on this 5 

issue. As UVic does not do a reasonable simulation of snow cover and ground 6 

temperature, we feel it is not necessary to include this model in the discussion here. 7 

Based on results from CLM4.5 and ISBA, the permafrost area calculated from MAGT 8 

at 3 m and at 10 m only changes by 1x10
4
 km

2
. For results from CLM4.5, the areas 9 

calculated from MAGT at 20 m and 30 m do not change from the one calculated at 10 m. 10 

This is due to MAGT only considering annual mean soil temperature, not the seasonal 11 

cycle. This is consistent with the finding that the across-threshold uncertainty for 12 

MAGT-derived permafrost area is quite small (Table 3). However, the derived 13 

permafrost area with the TSL method improves when soil depth used for calculation is 14 

increased from 3 m to 5 m (Table 6). This sensitivity is because TSL requires 15 

information on the seasonal cycle of soil temperature. In other words, results of TSL 16 

method are sensitive to the active layer dynamics. The permafrost on TP is usually 17 

much warmer and has a deeper active layer than found in continuous permafrost of the 18 

arctic and boreal region. Hence deeper soil layers would be well suited for TP 19 

permafrost simulation. A shallow column in a permafrost model can cause problems in 20 

the simulation of the degradation of warm permafrost (near 0
o
 C), which is expected for 21 

projections of future climate warming (Lawrence et al., 2008). In addition, Alexeev et 22 

al. (2007) pointed out that deep soil configuration can improve the simulation of 23 

seasonal and even annual cycle of shallow layers. Nicolsky et al. (2007) recommend a 24 

soil column of at least 80 m for models applied to permafrost regions. 25 

 26 

Soil layer discretization and spatial resolutions are different among the six models 27 

(Table 1). In this study we linearly interpolated and extrapolated the soil temperatures 28 
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onto the standard layers (Sect. 3.1). The impact of ground surface temperature 1 

extrapolation was found to be small by comparing Figures 7 and 8 with those made 2 

using temperatures at 5 cm depth (not shown), with both geographical patterns and 3 

widespread negative surface temperature offsets in ISBA and JULES. We re-gridded 4 

the Wang06 map onto each model‘s spatial resolution to evaluate the models 5 

objectively. This leads to an error bar estimate of half a grid cell area, up to 20 × 10
4
 6 

km
2
, which is half of the spread of observation area estimates (Sect. 3.2). Daily and 7 

hourly temperature data may make some differences to the permafrost extent map, but 8 

the diurnal cycle wave decays at shallower soil depths than the deepest model layer. 9 

 10 

7 Summary and Conclusions 11 

Results of this model intercomparison quantify, for the first time, the uncertainties of 12 

model derived permafrost area on the Tibetan Plateau (TP). The uncertainties stem 13 

from across-model and across-diagnostic method variability as well as historic climate 14 

data uncertainties. According to the agreement of the air temperature based diagnostic 15 

methods (MAAT and F), we found lower uncertainty in permafrost area associated with 16 

air temperature forcing (99 to 135 ×10
4 
km

2
) in comparison with the uncertainty (1 to 17 

128 ×10
4 
km

2
) associated with the simulation of soil temperature used in the other three 18 

diagnostic methods (TSL, MAGT, and SFI). The observation-based Wang06 19 

permafrost area is 101 ×10
4 

km
2
.  20 

 21 

Most models in this study produced permafrost maps in better agreement with the 22 

Wang06 map using the MAGT and SFI methods rather than with the TSL method. But 23 

this does not mean that the models simulate permafrost dynamics correctly. Although 24 

most models can capture the threshold value of MAGT and SFI, their ground 25 

temperatures still show various biases, both in the mean annual value and the seasonal 26 

variation. Therefore, most models produce worse permafrost maps with the TSL 27 
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method. The TSL method is a more demanding, and to date, elusive target. 1 

 2 

Modeled snow depth and surface and soil temperature offsets vary widely amongst the 3 

models. If the observation sites for soil temperature are representative, then 4 

LPJ-GUESS and UVic have substantial biases in their soil temperature simulations, 5 

mainly attributable to inappropriate description of the surface (vegetation, snow cover) 6 

and soil properties (soil texture, hydrology). Other models (ISBA, JULES) show biases 7 

in the simulation of winter soil temperature.  8 

 9 

Further evaluation of model results from the permafrost-RCN is underway for TP that 10 

examines permafrost temperature, active layer thickness and carbon balance under 11 

present and future climate forcing. We also plan to complement this model 12 

intercomparison study by an uncertainty quantification analysis of key model 13 

parameters (e.g. improved vegetation and snow albedo, soil colors, etc) with the CoLM 14 

model. However, a crucial requirement for this is much better data availability allowing 15 

for better spatial coverage across the TP in the evaluation of simulated ground 16 

temperature profiles. Under the Chinese Scientific Foundation Project ―Permafrost 17 

Background Investigation on the Tibetan Plateau‖ (No. 2010CB951402), a series of 18 

new stations have been established, especially in the depopulated zone.  More ground 19 

truth data will be published in the near future, which will also be assimilated in a new 20 

observation-based permafrost map. 21 
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Tables 1 

Table 1. The six land surface models, analyzed over the Tibetan plateau (TP) 2 

Model 
Native 

Resolution 
Number of 
soil layers 

Depth of soil 
column (m) 

Spatial domain 
Atmospheric 
Forcing Data 

CLM4.5 

Swenson and 

Lawrence, 2012 
Oleson et al., 2013 

1°×1.25° 30 38.1 Whole TP CRUNCEP41 

CoLM 

Dai et al., 2003 
Ji et al., 2014 

1°×1° 10 2.86 Whole TP Princeton2 

ISBA 
Decharme et al. 2011 

0.5°×0.5° 14 10 

Permafrost 

region follow 

IPA map 

WATCH 3 

JULES 

Best et al., 2011 
0.5°×0.5° 30 2.95 Whole TP WATCH 3 

LPJ-GUESS 

Gerten et al., 2004 

Wania et al., 2009 

0.5°×0.5° 25 3 

Permafrost 

region follow 

IPA map 

CRU TS 3.14 

UVic 

Meissner et al., 2003 
1.8°×3.6° 14 198.1 Whole TP CRUNCEP41 

1
Viovy and Ciais (http://dods.extra.cea.fr/) 3 

2
Sheffield et al. (2006) (http://hydrology.princeton.edu/data.pgf.php) 4 

3
Weedon et al. (2011) (http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century) 5 

4
Harris et al. (2013), University of East Anglia Climate Research Unit (2013) 6 

7 

http://dods.extra.cea.fr/
http://hydrology.princeton.edu/data.pgf.php
http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century
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Table 2. The five diagnostic methods and threshold values used to derive permafrost. 1 

The thresholds commonly used in the literature and in this paper are marked in bold. 2 

Method Definition Threshold Data used for calculation 

TSL More than 24 consecutive months soil 

temperature ≤ a threshold 

0°C 0 ~ 3m monthly soil temperature 

MAGT Mean annual of 3 m soil temperature ≤ 

a threshold 

0°C, 0.5°C Mean annual of 3 m soil 

temperature 

SFI Surface frost number ≥ a threshold 0.4, 0.5, 0.6 Annually maximum and minimum 

ground surface temperature 

F Air frost number ≥ a threshold  0.4, 0.5, 0.6 Annually maximum and minimum 
air temperature 

MAAT Mean annual air temperature ≤ a 

threshold  

0°C, -1°C, -2°C, -3°C Mean annual of air temperature 

 3 

4 
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Table 3. Derived permafrost area inside the common modeling region on Tibetan 1 

plateau (10
4
 km

2
) from 6 LSMs and 5 diagnostic methods, using different thresholds. 2 

The results of thresholds commonly used in the literature and in this paper are marked 3 

in bold. 4 

 CLM4.5 CoLM JULES UVic ISBA LPJ-GUESS 
across-model 
uncertainty 

Indirect method 

MAAT≤ 0°C 130 124 126 116 127 129 14 

MAAT≤ -1°C 122 117 119 109 119 120 13 

MAAT≤ -2°C 113 105 111 99 109 110 14 

MAAT≤ -3°C 95 83 96 81 91 93 15 

across-threshold 

uncertainty 
35 41 30 35 36 36  

F≥ 0.4 140 135 138 126 138 138 14 

F≥ 0.5 135 127 131 118 130 131 17 

F≥ 0.6 117 93 106 89 100 101 28 

across-threshold 

uncertainty 
23 42 32 37 38 37  

Direct method 

TSL 60 1 62 8 44 119 118 

MAGT≤ 0.5°C 112 102 104 8 72 131 123 

MAGT≤ 0°C 104 89 96 8 61 128 120 

across-threshold 
uncertainty 

8 13 8 0 11 3  

SFI≥ 0.4 135 122 130 32 131 127 103 

SFI≥ 0.5 116 62 100 8 113 119 111 

SFI≥ 0.6 42 17 38 4 55 104 100 

across-threshold 

uncertainty 
93 105 92 28 76 23  

across-direct method uncertainty 

(based on commonly used methods 

TSL, MAGT≤0ºC, SFI≥0.5) 

56 88 38 0 69 9  

5 
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Table 4. Model - observed temperatures differences in mean annual and seasonal cycle 1 

amplitude of air and soil temperature, based on data from 1996-2000 (section 3.4;  2 

Figure 4), and the corresponding vegetation and soil properties of both observation and 3 

models. Air temperature data is only available for D66 station and limited from 1997/9 4 

to 1998/8. Thus the statistics of ground temperature of D66 is also confined to this 5 

period . 6 

D66  (35.63°N, 93.81°E) 

  
Temperature bias ―Model - Observation‖ 

Soil conditions 

Air temperature 

Ground temperature 

At 0.04 m depth At 2.63 m depth 

Bare 

ground 
Vegetation 

Texture 

(top soil) Mean 
annual 

Seasonal 
amplitude 

Mean 

annual 

Seasonal 

amplitude 

Mean 

annual 

Seasonal 

amplitude 

Obs1             100% None gravel 

CLM4.52 4.3 1 2 -0.2 2 3.5 81% 
10% boreal shrub 

8% C3 arctic grass  

63% sand 

19% clay 

CoLM3 2.3 0.1 0 0.1 -1 2.4 87% 

4% boreal shrub 

5% C3 arctic grass 

3% C3 non arctic 
grass 

43% sand 

18% clay 

ISBA4 1.4 0.1 -1.3 -1.3 0.8 0.5 53% 
46% C3 
 grass 

55% sand 
7% clay 

JULES# 1.1 0.3 -0.5 2.1 -2 4       

LPJ 
-GUESS*5 

1.5 -0.1 -3.4 -6.6 -3.7 1.5   tundra clay-like 

UVic6 2.6 0.5 7.5 -1.5 7.6 2.1 100% None 
44% sand 

24% clay 

 7 

8 
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 1 

D105  (33.07°N, 91.94°E) 

  Temperature bias ―Model - 

Observation‖ 

Soil conditions 

Ground temperature 

At 3 m depth 

Bare ground Vegetation 
Texture 

(top soil) 
Mean   annual Seasonal 

amplitude 

Obs7     50%-60% grass (Leontopodium nanum) coarse and fine sand 

CLM4.52 -1.2 0.8 48% 
17% boreal_shrub 

30% C3 arctic grass 

60% sand 

20% clay 

CoLM3 0.1 0.2 7% 
69% C3 arctic grass 

24% C3 non arctic grass 

38% sand 

16% clay 

ISBA4 0.9 -0.9 27% 72% C3 grass 
52% sand 

10% clay 

JULES# -1.8 1.8       

LPJ 

-GUESS*5 
-3.7 0.7   tundra clay-like 

UVic6 1 -0.2 7% 
33% C3 grass 

60% shrub 

43% sand 

32% clay 

 2 

 3 

4 
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 1 

D110  (32.82°N, 93.01°E) 

  Temperature bias ―Model - 

Observation‖ 
Soil conditions 

Ground temperature 

At 0.04 m depth 

 Bare ground Vegetation 
Texture 

(top soil) 
Mean   annual Seasonal 

amplitude 

Obs8     60-70% grass (Kobresia humilis) coarse and fine sand 

CLM4.52 -1.8 1 33% 
7% boreal_shrub 
57% C3 arctic grass 

60% sand 
21% clay 

CoLM3 0.5 1.4 1% 
56% C3 arctic grass 

43% C3 non arctic grass 

45% sand 

17% clay 

ISBA4 -1.4 0.8 10% 89% C3 grass 
50% sand 
11% clay 

JULES# -1.9 0.9       

LPJ 
-GUESS*5 

-4.1 -3.7   tundra clay-like 

UVic6 1.1 -0.5 6% 
31% C3 grass 

60% shrub 

45% sand 

30% clay 

 2 

1
Yang et al. (2000) 3 

2
https://dl.dropboxusercontent.com/u/41730762/surfdata_0.9x1.25_simyr1850_c130415.nc 4 

3
 Dai et al. (2003); Ji et al. (2014) 5 

4
Harmonized World Soil Database 6 

5
Thermal diffusivities follow Van Duin (1963) and Jury et al. (1991), volumetric fraction of organic 7 

material follow Hillel (1998), water held below wilting point and porosity from AWFA (2002) 8 

6
Scholes and de Colstoun (2012) (http://www.daac.ornl.gov) 9 

7 
Wang et al. (2012) 10 

8
Yang et al. (1999) 11 

* 
The classification of soil texture is based on soil volumetric water holding capacity, thermal 12 

diffusivities, volumetric fraction of organic material, water held below wilting point and porosity 13 

#
This model doesn‘t provide soil parameter information 14 

 15 

 16 

17 

https://dl.dropboxusercontent.com/u/41730762/surfdata_0.9x1.25_simyr1850_c130415.nc
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Table 5. Description of Model Characteristics Relevant to Soil Temperatures on TP 1 

Model 
Snow 

cover1 
Albedo2 

Soil 

water3 

Unfrozen water 

effect during 
phase change4 

Surface 

Organic layer 
insulation 

Snow scheme5 

CLM4.5 Medium Medium Medium Yes Yes Dynamic & ML 

CoLM Medium Medium Medium No No Dynamic & ML 

ISBA Low Low Medium Yes Yes Static &ML 

JULES Low Low Medium Yes No Dynamic & ML 

LPJ-GUESS Medium Low High No No Static & BL 

UVic None Low High Yes No Static & I 

1
 Low snow cover is confined to high elevations, medium tends to be on western TP 2 

2
 LPJ-GUESS has constant albedo everywhere and UVic albedo varies slightly due to 3 

vegetation, year-round albedo variability for other models depends mainly on snow 4 

cover in winter and soil moisture, vegetation, etc in summer 5 

3
 soil water content includes both liquid and ice fractions 6 

4 
all models calculate soil thermal properties depending on soil moisture and also phase 7 

change of water, but CoLM and LPJ-GUESS ignore solute dependent freezing 8 

processes 9 

5
 Dynamic or static snow layering; ML: Multi-layer, BL: Bulk-layer, I: Implicit; 10 

according to Slater et al. [2001] 11 

 12 

13 
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Table 6. Derived permafrost area (10
4
 km

2
) with deeper soil layers using the TSL 1 

method. The results for thresholds commonly used in the literature and in this paper are 2 

marked in bold. 3 

 4 

Depth of deepest layer  

used for calculation 
CLM4.5 ISBA 

3 m 60 44 

5 m 85 54 

 5 

 6 

7 
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Figure Captions  1 

 2 

Figure 1. Permafrost maps derived from different diagnostic methods and models 3 

compared with Wang06 map. Permafrost inside the common modeling region is used 4 

for all-models inter-comparison, while permafrost outside allows further evaluation 5 

over the whole TP for CLM4.5, CoLM, JULES and UVic. The observation-based map 6 

of permafrost (Wang et al., 2006) is re-gridded to match model resolution. The selected 7 

area in the western TP (33°- 36°N, 82.5°- 85.5°E) is used to examine across-model 8 

differences in Figure 5. Insets show location map of TP and how the common region is 9 

related to the TP. 10 

11 
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 1 

Figure 2. Permafrost areas derived from different diagnostic methods compared with 2 

Wang06 map. (a) Permafrost area, with TP permafrost outside the common region 3 

denoted by grey extensions to the bars for CLM4.5, CoLM, JULES and UVic. (b) Bias 4 

in permafrost area ―Model minus Wang06 estimate‖, only for the common modeling 5 

region. The error bar is calculated as half of the averaged grid cell area of the model, so 6 

is model resolution dependent.  7 

8 
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 1 

Figure 3. Kappa coefficient, K, quantifying the agreement between model-derived and 2 

Wang06 maps (see section 3.3). K ≥ 0.2 indicates at least fair agreement with Wang06 3 

map. The lower triangle is K for the whole TP and is only available for CLM4.5, CoLM, 4 

JULES and UVic, while the upper triangle is K for the common modeling region. 5 

6 



46 
 

 1 

Figure 4. Monthly soil temperature variations at 3 stations from models and 2 

observations. (a)  and (c) soil temperature of top layer. (b) and (d) soil temperature of 3 

deeper layer, 1996-2000. ―Mean‖ denotes annual average temperature. We use the 4 

topmost available soil temperatures (0.04 m at D66 and D110, no good data for D105) 5 

and lowest available ones (2.63 m at D66, 3 m of D105), while D110 has only 6 

temperatures at 2 m depth. 7 

 8 

9 
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 1 

Figure 5. Monthly temperatures averaged over the selected western TP area in Figure 1. 2 

(a) Forcing air temperature, (b) Ground surface temperature, (c) 3 m soil temperature, 3 

averaged over 1980-2000.― Mean‖ denotes annual average temperature. 4 
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 1 

Figure 6. Winter snow depth for the common region, averaged over 1980-2000. Note 2 

the nonlinear color scale. We use the Long Time Series Snow Dataset of China (Che et 3 

al., 2008) (http://westdc.westgis.ac.cn) as observed snow depth. The observed snow 4 

depth plot is further interpolated onto the models‘ resolutions as ―OBS_‖. The OBS_05 5 

is in 0.5°resolution for CoLM, ISBA, JULES and LPJ-GUESS. The OBS_CLM4.5 and 6 

OBS_UVic are in the resolutions of CLM4.5 and UVic separately. 7 

 8 

 9 

http://westdc.westgis.ac.cn/
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 1 

Figure 7. Mean surface temperature offset: difference in mean winter temperatures 2 

between surface soil and air, averaged over 1980-2000. Warm colors indicate soil is 3 

warmer than air temperature. 4 

5 
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 1 

Figure 8. Mean soil temperature offset: difference in mean winter temperatures 2 

between soil at 1 m depth and surface soil, averaged over 1980-2000. Warm colors 3 

indicate deep soil is warmer than shallow soil. 4 
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 1 

Figure 9. Mean surface temperature offset (difference in mean winter temperatures 2 

between surface soil and air, averaged over 1980-2000). Left column is for snow 3 

depth > 4 cm, right column shows regions with snow depth < 4 cm. Warm colors 4 

indicate soil is warmer than air temperature. 5 
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 1 

Figure 10. Mean surface temperature offset (difference in mean winter temperatures 2 

between surface soil and air, averaged over 1980-2000) as a function of snow depth for 3 

grid points where average snow depth < 4 cm.  4 

 5 


