Preprints
https://doi.org/10.5194/tcd-8-2043-2014
https://doi.org/10.5194/tcd-8-2043-2014
25 Apr 2014
 | 25 Apr 2014
Status: this preprint was under review for the journal TC but the revision was not accepted.

Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica

T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni

Abstract. The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni

Viewed

Total article views: 3,124 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,696 1,216 212 3,124 111 134
  • HTML: 1,696
  • PDF: 1,216
  • XML: 212
  • Total: 3,124
  • BibTeX: 111
  • EndNote: 134
Views and downloads (calculated since 25 Apr 2014)
Cumulative views and downloads (calculated since 25 Apr 2014)

Saved

Latest update: 13 Dec 2024