Articles | Volume 9, issue 5
The Cryosphere, 9, 1879–1893, 2015

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 9, 1879–1893, 2015

Research article 24 Sep 2015

Research article | 24 Sep 2015

Satellite observations of changes in snow-covered land surface albedo during spring in the Northern Hemisphere

K. Atlaskina et al.

Related authors

Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa
A.-M. Sundström, A. Nikandrova, K. Atlaskina, T. Nieminen, V. Vakkari, L. Laakso, J. P. Beukes, A. Arola, P. G. van Zyl, M. Josipovic, A. D. Venter, K. Jaars, J. J. Pienaar, S. Piketh, A. Wiedensohler, E. K. Chiloane, G. de Leeuw, and M. Kulmala
Atmos. Chem. Phys., 15, 4983–4996,,, 2015

Related subject area

Remote Sensing
InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844,,, 2021
Short summary
Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine
YoungHyun Koo, Hongjie Xie, Stephen F. Ackley, Alberto M. Mestas-Nuñez, Grant J. Macdonald, and Chang-Uk Hyun
The Cryosphere, 15, 4727–4744,,, 2021
Short summary
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588,,, 2021
Short summary
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537,,, 2021
Short summary
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482,,, 2021
Short summary

Cited articles

Albert, M. R. and Perron, F. E.: Ice layer and surface crust permeability in a seasonal snow pack, Hydrol. Process., 14, 3207–3214, 2000.
Alton, P.: A simple retrieval of ground albedo and vegetation absorptance from MODIS satellite data for parameterisation of global Land-Surface Models, Agr. Forest Meteorol., 149, 1769–1775, 2009.
Aoki, T., Hachikubo, A., and Hori, M.: Effects of snow physical parameters on shortwave broadband albedos, J. Geophys. Res.-Atmos., 108, 4616,, 2003.
Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.: Atmospheric Aerosol Deposition on Snow Surfaces and Its Effect on Albedo, Scient. Onl. Lett. Atmos. Meteorol. Soc. Jpn., 2, 13–16, 2006.
Baldocchi, D., Kelliher, F. M., Black, T. A., and Jarvis, P.: Climate and vegetation controls on boreal zone energy exchange, Global Change Biol., 6, 69–83, 2000.
Short summary
Snow cover explained most of the spring surface albedo changes in the Northern Hemisphere in the years 2000−2012. However, there are vast areas where albedo changed up to ±0.2 under full snow-covered conditions. We found that if in these areas, the mean monthly air temperature exceeds a value between -15°C and -10°C, depending on the region, albedo decreases with an increase of the temperature. The complexity of processes involved in surface albedo changes is discussed.