Articles | Volume 9, issue 4
https://doi.org/10.5194/tc-9-1401-2015
https://doi.org/10.5194/tc-9-1401-2015
Research article
 | 
31 Jul 2015
Research article |  | 31 Jul 2015

Modelling annual mass balances of eight Scandinavian glaciers using statistical models

M. Trachsel and A. Nesje

Abstract. Mass balances of Scandinavian glaciers are mainly influenced by winter precipitation and summer temperature. We used simple statistical models to assess the relative importance of summer temperature and winter precipitation for annual balances of eight glaciers in Scandinavia. Winter precipitation was more important for maritime glaciers, whereas summer temperature was more important for annual balances of continental glaciers. Most importantly relative importances of summer temperature and winter precipitation were not stable in time. For instance, winter precipitation was more important than summer temperature for all glaciers in the 25-year period 1972–1996, whereas the relative importance of summer temperature was increasing towards the present. Between 1963 and 1996 the Atlantic Multidecadal Oscillation (AMO) index was consistently negative and the North Atlantic Oscillation (NAO) Index was consistently positive between 1987 and 1995, both being favourable for glacier growth. Winter precipitation was more important than summer temperature for annual balances when only considering subsets of years with high NAO-index and negative AMO-index, respectively, whereas the importance of summer temperature was increased analysing subsets of years with low NAO-index and positive AMO-index, respectively. Hence, the relative importance of precipitation and temperature for mass balances was probably influenced by the state of the AMO and the NAO, as these two indexes are associated with changes in summer temperature (AMO) and winter precipitation (NAO).

Download
Short summary
We employ statistical models to model annual glacier mass balances of eight Scandinavian glaciers as function of summer temperature and winter precipitation. Relative importances of winter precipitation and summer temperature vary in time. Relative importances are influenced by AMO and NAO.