Articles | Volume 20, issue 1
https://doi.org/10.5194/tc-20-453-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-20-453-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Basal unit radar characteristics at the southern flank of Dome A, East Antarctica
Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Duncan A. Young
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Donald D. Blankenship
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Tyler J. Fudge
Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Laura Lindzey
Ocean Engineering Department, Applied Physics Laboratory, University of Washington, Seattle, 98105, USA
Hunter Reeves
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, 78712, USA
Alejandra Vega-Gonzalez
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Department of Environmental Sciences, University of Virginia, Charlottesville, 22904, USA
Shivangini Singh
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, 78712, USA
Megan Kerr
University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, 78758, USA
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, 78712, USA
Emily Wilbur
Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA
Michelle Koutnik
Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA
Related authors
Marc J. Sailer, Tyler J. Fudge, John D. Patterson, Shuai Yan, Duncan A. Young, Shivangini Singh, Don Blankenship, and Megan Kerr
Clim. Past, 21, 2389–2406, https://doi.org/10.5194/cp-21-2389-2025, https://doi.org/10.5194/cp-21-2389-2025, 2025
Short summary
Short summary
In this study, we model vertical atmospheric gas diffusion in ice older than 1 million years in the Antarctic ice sheet. We estimate climate signal preservation and help identify a potential region for a future deep ice core in East Antarctica. We find that regions with low accumulation rates and moderate ice thickness result in lower diffusion rates. In particular, the foothills of Dome A is a promising location for a deep ice core that extends the present ice core record.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative working together on these archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica and how this is being used to reconstruct past and to predict future ice and climate behaviour.
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista M. Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
Ocean Sci., 22, 187–208, https://doi.org/10.5194/os-22-187-2026, https://doi.org/10.5194/os-22-187-2026, 2026
Short summary
Short summary
Here, we develop and run a high-resolution ocean model of Jones Sound from 2003–2016 and characterize circulation into, out of, and within the sound as well as associated sea ice and productivity cycles. Atmospheric and ocean warming drives sea ice decline, which enhances biological productivity due to the increased light availability. These results highlight the utility of high-resolution models in simulating complex waterways and the need for sustained oceanographic measurements in the sound.
An Y. Li, Michelle R. Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
Earth Surf. Dynam., 14, 1–31, https://doi.org/10.5194/esurf-14-1-2026, https://doi.org/10.5194/esurf-14-1-2026, 2026
Short summary
Short summary
Many alcoves on Mars resemble glacial cirques on Earth. While some contain glacier-like forms, many do not, and they have never been studied at a large scale. We mapped ~2,000 alcoves in Deuteronilus Mensae and identified 435 as "cirque-like." These show geomorphic signs of past glaciation and mainly face south–southeast, implying ice accumulation during high obliquity. Further research is needed to confirm the style of glaciation as either warm-based or cold-based.
Marc J. Sailer, Tyler J. Fudge, John D. Patterson, Shuai Yan, Duncan A. Young, Shivangini Singh, Don Blankenship, and Megan Kerr
Clim. Past, 21, 2389–2406, https://doi.org/10.5194/cp-21-2389-2025, https://doi.org/10.5194/cp-21-2389-2025, 2025
Short summary
Short summary
In this study, we model vertical atmospheric gas diffusion in ice older than 1 million years in the Antarctic ice sheet. We estimate climate signal preservation and help identify a potential region for a future deep ice core in East Antarctica. We find that regions with low accumulation rates and moderate ice thickness result in lower diffusion rates. In particular, the foothills of Dome A is a promising location for a deep ice core that extends the present ice core record.
Felix S. L. Ng, Rachael H. Rhodes, Tyler J. Fudge, and Eric W. Wolff
The Cryosphere, 19, 5693–5717, https://doi.org/10.5194/tc-19-5693-2025, https://doi.org/10.5194/tc-19-5693-2025, 2025
Short summary
Short summary
Impurity diffusion in ice destroys climate history. We give a new way to find the diffusion rate from ice-core records. Its use on sulphate of the European Project for Ice Coring in Antarctica Dome C core reveals rapid diffusion in snow (suggesting H2SO4 vapour diffusion in air pores) and slow diffusion in the ice below (involving signal relocation between crystal interfaces). We estimate a maximum sulphate diffusion length of 2 cm for the old ice sought by the coring projects on Little Dome C.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative working together on these archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica and how this is being used to reconstruct past and to predict future ice and climate behaviour.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024, https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Short summary
Ice shelves are a key control on Antarctic contribution to sea level rise. We examine the Nansen Ice Shelf in East Antarctica using a combination of field-based and satellite data. We find the basal topography of the ice shelf is highly variable, only partially visible in satellite datasets. We also find that the thinnest region of the ice shelf is altered over time by ice flow rates and ocean melting. These processes can cause fractures to form that eventually result in large calving events.
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024, https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
Short summary
We use the oldest Antarctic ice core to estimate the rate of diffusion of sulfuric acid. Sulfuric acid is a marker of past volcanic activity and is critical in developing ice core timescales. The rate of diffusion is uncertain and is important to know, both for selecting future ice core locations and interpreting ice core records. We find the effective diffusivity of sulfate is 10 times smaller than previously estimated, indicating that the sulfuric acid signals will persist for longer.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kristian Chan, Cyril Grima, Anja Rutishauser, Duncan A. Young, Riley Culberg, and Donald D. Blankenship
The Cryosphere, 17, 1839–1852, https://doi.org/10.5194/tc-17-1839-2023, https://doi.org/10.5194/tc-17-1839-2023, 2023
Short summary
Short summary
Climate warming has led to more surface meltwater produced on glaciers that can refreeze in firn to form ice layers. Our work evaluates the use of dual-frequency ice-penetrating radar to characterize these ice layers on the Devon Ice Cap. Results indicate that they are meters thick and widespread, and thus capable of supporting lateral meltwater runoff from the top of ice layers. We find that some of this meltwater runoff could be routed through supraglacial rivers in the ablation zone.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022, https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thinner snowpack in the past is often due to steeper surface topography, in which faster winds erode the snow and deposit it in flatter areas. The slope and wind seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary
Short summary
Radar observation collected above Titan Dome of the East Antarctic Ice Sheet is used to describe ice geometry and test a hypothesis that ice beneath the dome is older than 1 million years. An important climate transition occurred between 1.25 million and 700 thousand years ago, and if ice old enough to study this period can be removed as an ice core, new insights into climate dynamics are expected. The new observations suggest the ice is too young – more likely 300 to 800 thousand years old.
Cited articles
Aitken, A. R. A., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M., Anandakrishnan, S., Dawson, E. J., Wiens, D. A., Eisen, O., and Siegert, M. J.: Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics, Rev. Geophys., 61, e2021RG000767, https://doi.org/10.1029/2021RG000767, 2023.
Beem, L. H., Cavitte, M. G. P., Blankenship, D. D., Carter, S. P., Young, D. A., Muldoon, G. R., Jackson, C. S., and Siegert, M. J.: Ice-flow reorganization within the East Antarctic Ice Sheet deep interior, Geol. Soc. Lond. Spec. Publ., 461, 35–47, https://doi.org/10.1144/SP461.14, 2018.
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base, Science, 331, 1592–1595, https://doi.org/10.1126/science.1200109, 2011.
Bingham, R. G., Bodart, J. A., Cavitte, M. G. P., Chung, A., Sanderson, R. J., Sutter, J. C. R., Eisen, O., Karlsson, N. B., MacGregor, J. A., Ross, N., Young, D. A., Ashmore, D. W., Born, A., Chu, W., Cui, X., Drews, R., Franke, S., Goel, V., Goodge, J. W., Henry, A. C. J., Hermant, A., Hills, B. H., Holschuh, N., Koutnik, M. R., Leysinger Vieli, G. J.-M. C., MacKie, E. J., Mantelli, E., Martín, C., Ng, F. S. L., Oraschewski, F. M., Napoleoni, F., Parrenin, F., Popov, S. V., Rieckh, T., Schlegel, R., Schroeder, D. M., Siegert, M. J., Tang, X., Teisberg, T. O., Winter, K., Yan, S., Davis, H., Dow, C. F., Fudge, T. J., Jordan, T. A., Kulessa, B., Matsuoka, K., Nyqvist, C. J., Rahnemoonfar, M., Siegfried, M. R., Singh, S., Višnjević, V., Zamora, R., and Zuhr, A.: Review article: AntArchitecture – building an age–depth model from Antarctica's radiostratigraphy to explore ice-sheet evolution, The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, 2025.
Bo, S., Siegert, M. J., Mudd, S. M., Sugden, D., Fujita, S., Xiangbin, C., Yunyun, J., Xueyuan, T., and Yuansheng, L.: The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet, Nature, 459, 690–693, https://doi.org/10.1038/nature08024, 2009.
Campbell, B. A., Putzig, N. E., Carter, L. M., Morgan, G. A., Phillips, Roger. J., and Plaut, J. J.: Roughness and near-surface density of Mars from SHARAD radar echoes, J. Geophys. Res.-Planets, 118, 436–450, https://doi.org/10.1002/jgre.20050, 2013.
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains, The Cryosphere, 11, 381–405, https://doi.org/10.5194/tc-11-381-2017, 2017.
Cavitte, M. G. P.: Flow re-organization of the East Antarctic ice sheet across glacial cycles, UT Electronic Theses and Dissertations, http://hdl.handle.net/2152/62592 (last access: 19 January 2026), 2017.
Cavitte, M. G. P., Young, D. A., Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L., Tozer, C. R., Schroeder, D. M., and Blankenship, D. D.: A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, 2021.
Chung, A., Parrenin, F., Steinhage, D., Mulvaney, R., Martín, C., Cavitte, M. G. P., Lilien, D. A., Helm, V., Taylor, D., Gogineni, P., Ritz, C., Frezzotti, M., O'Neill, C., Miller, H., Dahl-Jensen, D., and Eisen, O.: Stagnant ice and age modelling in the Dome C region, Antarctica, The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, 2023.
Chung, A., Parrenin, F., Mulvaney, R., Vittuari, L., Frezzotti, M., Zanutta, A., Lilien, D. A., Cavitte, M. G. P., and Eisen, O.: Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model, The Cryosphere, 19, 4125–4140, https://doi.org/10.5194/tc-19-4125-2025, 2025.
Corr, H., Ferraccioli, F., Jordan, T., and Robinson, C.: Antarctica's Gamburtsev Province (AGAP) Project – Radio-echo sounding data (2007–2009) (1.0), UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation [data set], https://doi.org/10.5285/0F6F5A45-D8AF-4511-A264-B0B35EE34AF6, 2020.
Creyts, T. T., Ferraccioli, F., Bell, R. E., Wolovick, M., Corr, H., Rose, K. C., Frearson, N., Damaske, D., Jordan, T., Braaten, D., and Finn, C.: Freezing of ridges and water networks preserves the Gamburtsev Subglacial Mountains for millions of years, Geophys. Res. Lett., 41, 8114–8122, https://doi.org/10.1002/2014GL061491, 2014.
Drews, R., Eisen, O., Weikusat, I., Kipfstuhl, S., Lambrecht, A., Steinhage, D., Wilhelms, F., and Miller, H.: Layer disturbances and the radio-echo free zone in ice sheets, The Cryosphere, 3, 195–203, https://doi.org/10.5194/tc-3-195-2009, 2009.
Franke, S., Gerber, T., Warren, C., Jansen, D., Eisen, O., and Dahl-Jensen, D.: Investigating the Radar Response of Englacial Debris Entrained Basal Ice Units in East Antarctica Using Electromagnetic Forward Modeling, IEEE T. Geosci. Remote, 61, 1–16, https://doi.org/10.1109/TGRS.2023.3277874, 2023.
Franke, S., Wolovick, M., Drews, R., Jansen, D., Matsuoka, K., and Bons, P. D.: Sediment Freeze-On and Transport Near the Onset of a Fast-Flowing Glacier in East Antarctica, Geophys. Res. Lett., 51, e2023GL107164, https://doi.org/10.1029/2023GL107164, 2024.
Fudge, T. J., Sauvage, R., Vu, L., Hills, B. H., Severi, M., and Waddington, E. D.: Effective diffusivity of sulfuric acid in Antarctic ice cores, Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024, 2024.
Goldberg, M. L., Schroeder, D. M., Castelletti, D., Mantelli, E., Ross, N., and Siegert, M. J.: Automated detection and characterization of Antarctic basal units using radar sounding data: demonstration in Institute Ice Stream, West Antarctica, Ann. Glaciol., 61, 242–248, https://doi.org/10.1017/aog.2020.27, 2020.
Goodge, J. W., Severinghaus, J. P., Johnson, J., Tosi, D., and Bay, R.: Deep ice drilling, bedrock coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica, Ann. Glaciol., 62, 324–339, https://doi.org/10.1017/aog.2021.13, 2021.
Hills, B. H., Young, T. J., Lilien, D. A., Babcock, E., Bienert, N., Blankenship, D., Bradford, J., Brighi, G., Brisbourne, A., Dall, J., Drews, R., Eisen, O., Ershadi, M. R., Gerber, T. A., Holschuh, N., Jansen, D., Jordan, T. M., Karlsson, N. B., Li, J., Martín, C., Matsuoka, K., May, D., Oraschewski, F. M., Paden, J., Rathmann, N. M., Ross, N., Schroeder, D. M., Siegert, M., Siegfried, M. R., Smith, E., and Zeising, O.: Radar Polarimetry in Glaciology: Theory, Measurement Techniques, and Scientific Applications for Investigating the Anisotropy of Ice Masses, Rev. Geophys., 63, e2024RG000842, https://doi.org/10.1029/2024RG000842, 2025.
Jamieson, S. S. R., Ross, N., Paxman, G. J. G., Clubb, F. J., Young, D. A., Yan, S., Greenbaum, J., Blankenship, D. D., and Siegert, M. J.: An ancient river landscape preserved beneath the East Antarctic Ice Sheet, Nat. Commun., 14, 6507, https://doi.org/10.1038/s41467-023-42152-2, 2023.
Kaundinya, S., Paden, J., Jacob, S., Shupert, C., Schroeder, B., Hale, R., Arnold, E., Sarkar, U. D., Occhiogrosso, V., Taylor, L., McMillan, S., and Rodriguez-Morales, F.: A Multi-Channel Airborne UHF Radar Sounder System for Oldest Ice Exploration: Development and Data Collection, in: IGARSS 2024 – 2024 IEEE International Geoscience and Remote Sensing Symposium, 41–44, https://doi.org/10.1109/IGARSS53475.2024.10640448, 2024.
Kerr, M., Young, D. A., Yan, S., Singh, S., Fudge, T. J., Blankenship, D. D., and Vega Gonzalez, A.: Characterizing the Subglacial Hydrology of the South Pole Basin, Antarctica Using COLDEX Airborne Geophysics, in: AGU Fall Meeting Abstracts, C31D-1369, AGU 2023 Fall Meeting, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1419095 (last access: 19 January 2026), 2023.
Kerr, M., Young, D., Shen, W., Ng, G., Singh, S., Buhl, D., Greenbaum, J., Yan, S., and Blankenship, D.: Are there thick sediments within South Pole Basin? Investigating the lithology of SPB using COLDEX airborne geophysics , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12510, https://doi.org/10.5194/egusphere-egu24-12510, 2024.
Lea, E. J., Jamieson, S. S. R., and Bentley, M. J.: Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology, The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, 2024.
Leysinger Vieli, G. J.-M. C., Martín, C., Hindmarsh, R. C. A., and Lüthi, M. P.: Basal freeze-on generates complex ice-sheet stratigraphy, Nat. Commun., 9, 4669, https://doi.org/10.1038/s41467-018-07083-3, 2018.
Lilien, D. A., Steinhage, D., Taylor, D., Parrenin, F., Ritz, C., Mulvaney, R., Martín, C., Yan, J.-B., O'Neill, C., Frezzotti, M., Miller, H., Gogineni, P., Dahl-Jensen, D., and Eisen, O.: Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C, The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, 2021.
Livingstone, S. J., Ng, F. S. L., Dow, C. F., Ross, N., Siegert, M. J., Siegfried, M., and Sole, A. J.: Subglacial lakes and their changing role in a warming climate, Nat. Rev. Earth Environ., 3, 106–124, https://doi.org/10.1038/s43017-021-00246-9, 2022.
MacGregor, J. A., Winebrenner, D. P., Conway, H., Matsuoka, K., Mayewski, P. A., and Clow, G. D.: Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data, J. Geophys. Res.-Earth Surf., 112, 1–14, https://doi.org/10.1029/2006JF000717, 2007.
MacGregor, J. A., Li, J., Paden, J. D., Catania, G. A., Clow, G. D., Fahnestock, M. A., Gogineni, S. P., Grimm, R. E., Morlighem, M., Nandi, S., Seroussi, H., and Stillman, D. E.: Radar attenuation and temperature within the Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 120, 983–1008, https://doi.org/10.1002/2014JF003418, 2015.
Michaelides, R. J. and Schroeder, D.: Doppler-based discrimination of radar sounder target scattering properties: A case study of subsurface water geometry in Europa's ice shell, Icarus, 326, 29–36, https://doi.org/10.1016/j.icarus.2019.02.037, 2019.
Mutter, E. L. and Holschuh, N.: Advancing interpretation of incoherent scattering in ice-penetrating radar data used for ice core site selection, The Cryosphere, 19, 3159–3176, https://doi.org/10.5194/tc-19-3159-2025, 2025.
Oswald, G. K. A. and Gogineni, S. P.: Recovery of subglacial water extent from Greenland radar survey data, J. Glaciol., 54, 94–106, https://doi.org/10.3189/002214308784409107, 2008.
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams, J. Geophys. Res.-Sol. Ea., 110, 1–17, https://doi.org/10.1029/2004JB003222, 2005.
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., and Holt, J. W.: Along-track focusing of airborne radar sounding data from west antarctica for improving basal reflection analysis and layer detection, IEEE T. Geosci. Remote, 45, 2725–2736, https://doi.org/10.1109/TGRS.2007.897416, 2007.
Pritchard, H. D., Fretwell, P. T., Fremand, A. C., Bodart, J. A., Kirkham, J. D., Aitken, A., Bamber, J., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Christianson, K., Conway, H., Corr, H. F. J., Cui, X., Damaske, D., Damm, V., Dorschel, B., Drews, R., Eagles, G., Eisen, O., Eisermann, H., Ferraccioli, F., Field, E., Forsberg, R., Franke, S., Goel, V., Gogineni, S. P., Greenbaum, J., Hills, B., Hindmarsh, R. C. A., Hoffman, A. O., Holschuh, N., Holt, J. W., Humbert, A., Jacobel, R. W., Jansen, D., Jenkins, A., Jokat, W., Jong, L., Jordan, T. A., King, E. C., Kohler, J., Krabill, W., Maton, J., Gillespie, M. K., Langley, K., Lee, J., Leitchenkov, G., Leuschen, C., Luyendyk, B., MacGregor, J. A., MacKie, E., Moholdt, G., Matsuoka, K., Morlighem, M., Mouginot, J., Nitsche, F. O., Nost, O. A., Paden, J., Pattyn, F., Popov, S., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J. L., Ross, N., Ruppel, A., Schroeder, D. M., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tabacco, I., Tinto, K. J., Urbini, S., Vaughan, D. G., Wilson, D. S., Young, D. A., and Zirizzotti, A.: Bedmap3 updated ice bed, surface and thickness gridded datasets for Antarctica, Sci. Data, 12, 414, https://doi.org/10.1038/s41597-025-04672-y, 2025.
Rempel, A. W., Hansen, D. D., Zoet, L. K., and Meyer, C. R.: Diffuse debris entrainment in glacier, lab and model environments, Ann. Glaciol., 64, 13–25, https://doi.org/10.1017/aog.2023.31, 2023.
Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C.: Estimating subglacial water geometry using radar bed echo specularity: Application to Thwaites Glacier, West Antarctica, IEEE Geosci. Remote Sens. Lett., 12, 443–447, https://doi.org/10.1109/LGRS.2014.2337878, 2015.
Schroeder, D. M., Bingham, R. G., Blankenship, D. D., Christianson, K., Eisen, O., Flowers, G. E., Karlsson, N. B., Koutnik, M. R., Paden, J. D., and Siegert, M. J.: Five decades of radioglaciology, Ann. Glaciol., 61, 1–13, https://doi.org/10.1017/aog.2020.11, 2020.
Shackleton, S., Goodge, J., Balter-Kennedy, A., Yan, S., Severinghaus, J., Briner, J., Brook, E., Christianson, K., Cloutier, M., Drebber, J., Feinberg, J., Ferraccioli, F., Fitzgerald, P., Higgins, J., Hishamunda, V., Jih, R., Johnson, J., Karplus, M., Kerr, M., Kirkpatrick, L., Maiken Kristiansen Revheim, Kurz, M., Lipovsky, B., Maletic, E., Julia Marks Peterson, Phillips-Lander, C., Piccione, G., Reading, A., Rongen, M., Salerno, R., Shen, W., Sing, S., Smith-Shields, S., Alejandra Vega Gonzalez, Walcott-George, C., Wiens, D., Hanxiao, W., Wu, W., and Young, D.: The future of deep ice-sheet research in Antarctica with the Rapid Access Ice Drill, https://hdl.handle.net/20.500.14083/44424 (last access: 19 January 2026), 2025.
Tyler, G. L., Simpson, R. A., Maurer, M. J., and Holmann, E.: Scattering properties of the Venusian surface: Preliminary results from Magellan, J. Geophys. Res.-Planets, 97, 13115–13139, https://doi.org/10.1029/92JE00742, 1992.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochemistry, Geophysics, Geosystems, 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Winter, K., Woodward, J., Ross, N., Dunning, S. A., Hein, A. S., Westoby, M. J., Culberg, R., Marrero, S. M., Schroeder, D. M., Sugden, D. E., and Siegert, M. J.: Radar-Detected Englacial Debris in the West Antarctic Ice Sheet, Geophys. Res. Lett., 46, 10454–10462, https://doi.org/10.1029/2019GL084012, 2019.
Wolovick, M. J., Bell, R. E., Creyts, T. T., and Frearson, N.: Identification and control of subglacial water networks under Dome A, Antarctica, J. Geophys. Res.-Earth Surf., 118, 140–154, https://doi.org/10.1029/2012JF002555, 2013.
Wolovick, M. J., Creyts, T. T., Buck, W. R., and Bell, R. E.: Traveling slippery patches produce thickness-scale folds in ice sheets, Geophys. Res. Lett., 41, 8895–8901, https://doi.org/10.1002/2014GL062248, 2014.
Yan, S., Blankenship, D. D., Greenbaum, J. S., Young, D. A., Li, L., Rutishauser, A., Guo, J., Roberts, J. L., Ommen, T. D. V., Siegert, M. J., and Sun, B.: A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change, Geology, 50, 949–953, https://doi.org/10.1130/G50009.1, 2022a.
Yan, S., Blankenship, D. D., Young, D. A., Greenbaum, J. S., Jamieson, S. S. R., Ross, N., Paxman, G. J. G., Clubb, F. J., Roberts, J. L., van Ommen, T. D., Bo, S., and Siegert, M. J.: Aero-geophysical constraints on the crustal structure of the western margin of the Aurora Subglacial Basin, East Antarctica, AGU Fall Meeting Abstracts, ADS Bibcode: 2022AGUFMNS45B0327Y, NS45B-0327, AGU 2022 Fall Meeting, https://ui.adsabs.harvard.edu/abs/2022AGUFMNS45B0327Y/abstract (last access: 19 January 2026), 2022b.
Yan, S., Blankenship, D. D., Kerr, M. E., Li, D., Singh, S., Vega Gonzalez, A., and Young, D. A.: Fractional Thickness of Incoherent Scattering Within the Basal Unit Mapped by the NSF COLDEX MARFA Ice-Penetrating Radar, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601972, 2025a.
Yan, S., Blankenship, D. D., Kerr, M. E., Singh, S., Vega Gonzalez, A., and Young, D. A.: Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601912, 2025b.
Yan, S., Koutnik, M. R., Blankenship, D. D., Greenbaum, J. S., Young, D. A., Roberts, J. L., Ommen, T. van, Sun, B., and Siegert, M. J.: Holocene hydrological evolution of subglacial Lake Snow Eagle, East Antarctica, implied by englacial radiostratigraphy, J. Glaciol., 71, e29, https://doi.org/10.1017/jog.2025.15, 2025c.
Young, D. and Yan, S.: NSF COLDEX Basal Unit maps derived from delay Doppler proccessing, Texas Data Repository [data set], https://doi.org/10.18738/T8/UJ8TI0, 2025.
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.: The distribution of basal water between Antarctic subglacial lakes from radar sounding, Philos. T. R. Soc. Math. Phys. Eng. Sci., 374, https://doi.org/10.1098/rsta.2014.0297, 2016.
Young, D. A., Blankenship, D. D., Greenbaum, J., Kerr, M., Buhl, D., Ng, G., Kempf, S., and Chan, K.: NSF COLDEX Raw MARFA Ice Penetrating Radar data, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601768, 2024.
Young, D. A., Paden, J. P., Yan, S., Kerr, M. E., Singh, S., Vega Gonzàlez, A., Kaundinya, S., Greenbaum, J. S., Chan, K., and Blankenship, D. D.: NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome A, Texas Data Repository, V2 [data set], https://doi.org/10.18738/T8/M77ANK, 2025a.
Young, D. A., Paden, J. D., Yan, S., Kerr, M. E., Singh, S., Vega González, A., Kaundinya, S. R., Greenbaum, J. S., Chan, K., Ng, G., Buhl, D. P., Kempf, S. D., and Blankenship, D. D.: Coupled Ice Sheet Structure and Bedrock Geology in the Deep Interior of East Antarctica: Results From Dome A and the South Pole Basin, Geophys. Res. Lett., 52, e2025GL115729, https://doi.org/10.1029/2025GL115729, 2025b.
Short summary
This study examines the radar characteristics of the basal unit along Dome A’s southern flank. Through manual mapping and delay-Doppler analysis, we identifies two basal unit types and maps the spatial variation of incoherent scattering. The results suggest that basal unit radar appearance is influenced by englacial temperature variability and potentially by subglacial geological controls.
This study examines the radar characteristics of the basal unit along Dome A’s southern flank....