Articles | Volume 20, issue 1
https://doi.org/10.5194/tc-20-351-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-20-351-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The dependence of albedo on different factors for refreezing melt ponds in the Arctic
Jialiang Zhu
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Tao Li
CORRESPONDING AUTHOR
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
State Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Peng Lu
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
Yilin Liu
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Xiaoyu Wang
Key Laboratory of Physical Oceanography, MOE, Qingdao, 266100, China
Related authors
No articles found.
Chaofeng Wang, Zhiqiang Xu, Guangfu Luo, Xiaoyu Wang, Yan He, Musheng Lan, Tiancheng Zhang, and Wuchang Zhang
Ocean Sci., 21, 1873–1889, https://doi.org/10.5194/os-21-1873-2025, https://doi.org/10.5194/os-21-1873-2025, 2025
Short summary
Short summary
Our study provides a comprehensive assessment of microzooplankton ciliate trait structure, focusing on size spectrum, biodiversity and biotic–abiotic interplay based on 175 stations (1117 samples) across five temperature zones, which offered an ideal paradigm to study the plankton response to future climate change.
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
The Cryosphere, 19, 849–868, https://doi.org/10.5194/tc-19-849-2025, https://doi.org/10.5194/tc-19-849-2025, 2025
Short summary
Short summary
We developed a new method for retrieving lake ice phenology for a lake with complex surface cover. The method is particularly useful for mixed-pixel satellite data. We implement this method on Lake Ulansu, a lake characterized by complex shorelines and aquatic plants in northwestern China. In connection with a random forest model, we reconstructed the longest lake ice phenology in China.
Miao Yu, Peng Lu, Hang Zhang, Fei Xie, Lei Wang, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2155, https://doi.org/10.5194/egusphere-2024-2155, 2024
Preprint archived
Short summary
Short summary
The ice microstructure was observed by continuous sampling and a imaging system. The newly formed bubbles in the middle ice layer were partly thermally driven. Gas bubbles of the ice surface are significantly affected by net shortwave radiation. Variation in the inclusion size distribution was attributed to the merging process.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Hang Zhang, Miao Yu, Peng Lu, Jiaru Zhou, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-1758, https://doi.org/10.5194/egusphere-2023-1758, 2023
Preprint archived
Short summary
Short summary
The Monte Carlo (MC) model is employed to investigate the influence of the melt pond and floe size on the apparent optical properties. The ratio of albedo Kα and transmittance KT of linear combination to MC model are proposed to determine the accuracy of the linear combination. New parameterization results for Kα and KT of different latitude and melting stage are provided. The results can be used correct the in situ data got by linear combination with floe size smaller than 20 m.
Qingkai Wang, Yubo Liu, Peng Lu, and Zhijun Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-31, https://doi.org/10.5194/tc-2023-31, 2023
Revised manuscript not accepted
Short summary
Short summary
We intended to bring a new sight for the Arctic sea ice change by updating the knowledge of mechanical properties of summer Arctic sea ice. We find the flexural strength of summer Arctic sea ice was dependent on sea ice porosity rather than brine volume fraction, which unified the physical parameter affecting sea ice mechanical properties to sea ice porosity. Arctic sea ice strength has been weakening in recent summers by evaluating the strength using the previously published sea ice porosities.
Qingkai Wang, Zhaoquan Li, Peng Lu, Yigang Xu, and Zhijun Li
The Cryosphere, 16, 1941–1961, https://doi.org/10.5194/tc-16-1941-2022, https://doi.org/10.5194/tc-16-1941-2022, 2022
Short summary
Short summary
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to transport cargos on ice to the research stations. Knowing the mechanical properties of sea ice is helpful to solve the issue; however, these data are rarely reported in this region. We explore the effects of sea ice physical properties on the flexural strength, effective elastic modulus, and uniaxial compressive strength, which gives new insights into assessing the bearing capacity of landfast sea ice.
Cited articles
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. R. Meteorol. Soc., 136, 927–943, https://doi.org/10.1002/qj.618, 2010.
Anhaus, P., Katlein, C., Nicolaus, M., Hoppmann, M., and Haas, C.: From bright windows to dark spots: Snow cover controls melt pond optical properties during refreezing, Geophys. Res. Lett., 48, e2021GL095369, https://doi.org/10.1029/2021GL095369, 2021.
Barber, D. G., Galley, R., Asplin, M. G., De Abreu, R., Warner, K.-A., Pućko, M., Gupta, M., Prinsenberg, S., and Julien, S.: Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009, Geophys. Res. Lett., 36, L24501, https://doi.org/10.1029/2009GL041434, 2009.
Barber, D. G., Asplin, M. G., Raddatz, R. L., Candlish, L. M., Nickels, S., Meakin, S., Hochheim, K. P., Lukovich, J. V., Galley R. J., and Prinsenberg, S. J.: Change and variability in sea ice during the 2007–2008 Canadian International Polar Year program, Climatic Change, 115, 115–133, https://doi.org/10.1007/s10584-012-0477-6, 2012.
Boisvert, L. N., Markus, T., and Vihma, T.: Moisture flux changes and trends for the entire Arctic in 2003–2011 derived from EOS Aqua data, J. Geophys. Res. Oceans, 118, 5829–5843, https://doi.org/10.1002/jgrc.20414, 2013.
Cao, X., Lu, P., Lei, R., Wang, Q., and Li, Z.: Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018, Acta Oceanol. Sin., 39, 25–37, https://doi.org/10.1007/s13131-020-1645-6, 2020.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008.
Comiso, J. C., Meier, W. N., and Gersten, R.: Variability and trends in the Arctic Sea ice cover: Results from different techniques, J. Geophys. Res. Oceans, 122, 6883–6900, https://doi.org/10.1002/2017JC012768, 2017.
Di Biagio, C., Pelon, J., Blanchard, Y., Loyer, L., Hudson, S. R., Walden, V. P., Raut, J.-C., Kato, S., Mariage, V., and Granskog, M. A.: Toward a better surface irradiance budget analysis over sea ice in the high Arctic Ocean: a comparative study between satellite, reanalysis, and local-scale observations, J. Geophys. Res. Atmos., 126, e2020JD032555, https://doi.org/10.1029/2020JD032555, 2021.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Ebert, E. E. and Curry, J. A.: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions, J. Geophys. Res., 98, 10085–10109, https://doi.org/10.1029/93JC00656, 1993.
Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model, J. Geophys. Res., 115, C08012, https://doi.org/10.1029/2009JC005568, 2010.
Flocco, D., Feltham, D. L., Bailey, E., and Schroeder, D.: The refreezing of melt ponds on Arctic sea ice, J. Geophys. Res. Oceans, 120, 647–659, https://doi.org/10.1002/2014JC010140, 2015.
Grenfell, T. C. and Maykut, G. A.: The optical properties of ice and snow in the Arctic Basin, J. Glaciol., 18, 445–463, https://doi.org/10.1017/s0022143000021122, 1977.
Hudson, S. R.: Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic, J. Geophys. Res., 116, D16102, https://doi.org/10.1029/2011JD015804, 2011.
Istomina, L., Nicolaus, M., and Perovich, D. K.: Spectral albedo, water depth and ice thickness within melt ponds measured during POLARSTERN cruise ARK-XXVII/3 (IceArc) in 2012, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.876210, 2017.
Ivanov, B. and Alexadrov, V.: Albedo of the ice cover during late summer time and energy exchange processes, Ber. Polarforsch., 149, 47–51, 1994.
Kachimi, S. and Kwok, R.: Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021, Geophys. Res. Lett., 49, e2021GL097448, https://doi.org/10.1029/2021GL097448, 2022.
Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman, S., Elliott, S., Whitcomb, L. L., McFarland, C. J., Gerdes, R., Boetius, A., and German, C. R.: Influence of ice thickness and surface properties on light transmission through Arctic sea ice, J. Geophys. Res. Oceans, 120, 5932–5944, https://doi.org/10.1002/2015JC010914, 2015.
Kwok, R., Cunningham, G. F., Kacimi, S., Webster, M. A., Kurtz, N. T., and Petty, A. A.: Decay of the Snow Cover Over Arctic Sea Ice From ICESat 2 Acquisitions During Summer Melt in 2019, Geophys. Res. Lett., 47, e2020GL088209, https://doi.org/10.1029/2020GL088209, 2020.
Light, B., Eicken, H., Maykut, G. A., and Grenfell, T. C.: The effect of included participates on the spectral albedo of sea ice, J. Geophys. Res. Oceans, 103, 27739–27752, https://doi.org/10.1029/98JC02587, 1998.
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and absorption of solar irradiance by Arctic sea ice during the melt season, J. Geophys. Res., 113, C03023, https://doi.org/10.1029/2006JC003977, 2008.
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.: Optical properties of melting first-year Arctic sea ice, J. Geophys. Res. Oceans, 120, 7657–7675, https://doi.org/10.1002/2015JC011163, 2015.
Light, B., Smith, M. M., Perovich, D. K., Webster, M., A., Holland, M. M., Linhardt, F., Raphael, I. A., Clemens-Sewall, D., Macfarlane, A. R., Anhaus, P., and Bailey D. A.: Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elem. Sci. Anth., 10, 1, https://doi.org/10.1525/elementa.2021.000103, 2022.
Lu, P., Leppäranta, M., Cheng, B., and Li, Z.: Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance, Cold Reg. Sci. Technol., 124, 1–10, https://doi.org/10.1016/j.coldregions.2015.12.010, 2016.
Lu, P., Cao, X., Wang, Q., Leppäranta, M., Cheng, B., and Li, Z.: Impact of a surface ice lid on the optical properties of melt ponds, J. Geophys. Res. Oceans, 123, 8313–8328, https://doi.org/10.1029/2018JC014161, 2018.
Makshtas, A. P. and Podgorny, I. A.: Calculation of melt pond albedos on arctic sea ice, Polar Res., 15, 43–52, https://doi.org/10.3402/polar.v15i1.6635, 1996.
Malinka, A., Zege, E., Heygster, G., and Istomina, L.: Reflective properties of white sea ice and snow, The Cryosphere, 10, 2541–2557, https://doi.org/10.5194/tc-10-2541-2016, 2016.
Malinka, A., Zege, E., Istomina, L., Heygster, G., Spreen, G., Perovich, D., and Polashenski, C.: Reflective properties of melt ponds on sea ice, The Cryosphere, 12, 1921–1937, https://doi.org/10.5194/tc-12-1921-2018, 2018.
Markus, T., Cavalieri, D. J., and Ivanoff., A.: The potential of using Landsat 7 ETM+ for the classification of sea-ice surface conditions during summer, Ann. Glaciol., 34, 415–419, 2002.
Massicotte, P., Peeken, I., Katlein, C., Flores, H., Huot, Y., Castellani, G., Arndt, S., Lange, B. A., Tremblay, J., and Babin, M.: Sensitivity of phytoplankton primary production estimates to available irradiance under heterogeneous sea ice conditions, J. Geophys. Res. Oceans, 124, 5436–5450, https://doi.org/10.1029/2019JC015007, 2019.
Meier, W. N., Hovelsrud, G. K., van Oort, B. E. H., Key, J. R., Kovacs, K. M., Michel, C., Haas, C., Granskog, M. A., Gerland, S., Perovich, D. K., Makshtas, A., and Reist, J. D.: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity, Rev. Geophys., 51, 185–217, https://doi.org/10.1002/2013RG000431, 2014.
Morassutti, M. P. and Ledrew, E. F.: Albedo and depth of melt ponds on sea-ice, Int. J. Climatol., 16, 817–838, https://doi.org/10.1002/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO;2-5, 1996.
Nicolaus, M., Gerland, S., Hudson, S. R., Hanson, S., Haapala, J., and Perovich, D. K.: Seasonality of spectral albedo and transmissivity as observed in the Arctic Transpolar Drift in 2007, J. Geophys. Res., 115, C11011, https://doi.org/10.1029/2009JC006074, 2010.
Niehaus, H., Spreen, G., Birnbaum, G., Istomina, L., Jäkel, E., Linhardt, F., Neckel, N., Fuchs, N., Nicolaus, M., Sperzel, T., Tao, R., Webster, M., and Wright, N.: Sea ice melt pond fraction derived from Sentinel-2 data: Along the MOSAiC drift and Arctic-wide, Geophys. Res. Lett., 50, e2022GL102102, https://doi.org/10.1029/2022GL102102, 2023.
Perovich, D. K.: Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers, J. Geophys. Res., 95, 9557–9567, https://doi.org/10.1029/JC095iC06p09557, 1990.
Perovich, D. K. and Gow, A. J.: A quantitative description of sea ice inclusions, J. Geophys. Res. Oceans, 101, 327–343, https://doi.org/10.1029/96JC01688, 1996
Perovich, D. K. and Polashenski, C.: Albedo evolution of seasonal Arctic sea ice, Geophys. Res. Lett., 39, L08501, https://doi.org/10.1029/2012GL051432, 2012.
Perovich, D. K., Roesler, C. S., and Pegau, W. S.: Variability in Arctic sea ice optical properties, J. Geophys. Res. Oceans, 103, 1193–1208, https://doi.org/10.1029/97JC01614, 1998.
Perovich, D. K., Grenfell, T. C., Light, B., and Hobbs, P. V.: Seasonal evolution of the albedo of multiyear Arctic sea ice, J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438, 2002a.
Perovich, D. K., Tucker III, W. B., and Ligett, K. A.: Aerial observations of the evolution of ice surface conditions during summer, J. Geophys. Res., 107, 8048, https://doi.org/10.1029/2000JC000449, 2002b.
Perovich, D. K., Grenfell, T. C., Richter-Menge, J. A., Light, B., Tucker III, W. B., and Eicken, H.: Thin and thinner: Sea ice mass balance measurements during SHEBA, J. Geophys. Res. Oceans, 108, 8050, https://doi.org/10.1029/2001JC001079, 2003.
Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., and Nghiem, S. V.: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback, Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007GL031480, 2007.
Pistone, K., Eisenman, I., and Ramanathan, V.: Observational determination of albedo decrease caused by vanishing Arctic sea ice, Proc. Natl. Acad. Sci. U.S.A., 111, 3322–3326, https://doi.org/10.1073/pnas.1318201111, 2014.
Renner, A. H. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen, E., Nicolaus, M., and Goodwin, H.: Evidence of Arctic sea ice thinning from direct observations, Geophys. Res. Lett., 41, 5029–5036, https://doi.org/10.1002/2014GL060369, 2014.
Rösel, A. and Kaleschke, L.: Comparison of different retrieval techniques for melt ponds on Arctic sea ice from Landsat and MODIS satellite data, Biom. J., 47, 299–308, 2011.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data, J. Geophys. Res., 113, C05003, https://doi.org/10.1029/2007JC004252, 2008.
Schröeder, D., Feltham, D., Flocco, D., and Tsamados, M.: September Arctic sea-ice minimum predicted by spring melt-pond fraction, Nat. Clim. Change, 4, 353–357, https://doi.org/10.1038/nclimate2203, 2014.
Skyllingstad, E. D. and Paulson, C. A.: A numerical study of melt ponds, J. Geophys. Res., 112, C08015, https://doi.org/10.1029/2006JC003729, 2007.
Smith, M. M., Light, B., Macfarlane, A. R., Perovich, D. K., Holland, M. M., and Shupe, M. D.: Sensitivity of the Arctic sea ice cover to the summer surface scattering layer, Geophys. Res. Lett., 49, e2022GL098349, https://doi.org/10.1029/2022GL098349, 2022.
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56, 2018.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season and implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Wang, M., Su, J., Landy, J., Leppäranta, M., and Guan, L.: A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery, J. Geophys. Res. Oceans, 125, e2019JC015716, https://doi.org/10.1029/2019JC015716, 2020a.
Wang, Q., Lu, P., Leppäranta, M., Cheng, B., Zhang, G., and Li, Z.: Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018, J. Geophys. Res. Oceans, 125, e2020JC016371, https://doi.org/10.1029/2020JC016371, 2020b.
Warren, S. G.: Can be black carbon in snow be detected by remote sensing?, J. Geophys. Res., 118, 779–786, https://doi.org/10.1029/2012JD018476, 2013.
Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-Menge, J. A., Polashenski, C. M., and Light, B.: Seasonal evolution of melt ponds on Arctic sea ice, J. Geophys. Res. Oceans, 120, 5968–5982, https://doi.org/10.1002/2015JC011030, 2015.
Webster, M. A., Holland, M., Wright, N. C., Hendricks S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M., von Albedyll, L., and Zhang, J.: Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elem. Sci. Anth., 10, 1, https://doi.org/10.1525/elementa.2021.000072, 2022.
Xiong, C. and Ren, Y.: Arctic sea ice melt pond fraction in 2000–2021 derived by dynamic pixel spectral unmixing of MODIS images, ISPRS J. Photogramm., 197, 181–198, https://doi.org/10.1016/j.isprsjprs.2023.01.023, 2023.
Zhao, J., Barber, D., Zhang, S., Yang, Q., Wang, X., and Xie, H.: Record low sea ice concentration in the central Arctic during summer 2010, Adv. Atmos. Sci., 35, 106–115, https://doi.org/10.1007/s00376-017-7066-6, 2018.
Zhu, J., Liu, Y., Wang, X., and Li, T.: Optical properties and surface energy flux of spring fast ice in the Arctic, Acta Oceanol. Sin., 40, 84–96, https://doi.org/10.1007/s13131-021-1828-9, 2021.
Short summary
The albedo of refreezing melt pond is observed and effect of multiple factors on it is studied. The refreezing melt ponds are categorized into 5 types according to surface state that dominates albedo. Based on it, we found that ratio between albedo in certain bands can be used to distinguish snow-covered pond from unponded ice. Besides, properties such as pond depth and ice lid have various effect on different types of ponds, which is also examined using in-situ data and modelling.
The albedo of refreezing melt pond is observed and effect of multiple factors on it is studied....