Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-6749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Building multi-satellite DEM time series for insight into mélange inside large rifts in Antarctica
Menglian Xia
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, 200092, China
College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, 200092, China
College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
Marco Scaioni
Department of Architecture, Built environment and Construction engineering (ABC), Politecnico di Milano, via Ponzio 31, Milano 20133, Italy
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, 200092, China
College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
Zhenshi Li
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, 200092, China
College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
Gang Qiao
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, 1239 Siping Road, Shanghai, 200092, China
College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
Related authors
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Rongxing Li, Yuan Cheng, Haotian Cui, Menglian Xia, Xiaohan Yuan, Zhen Li, Shulei Luo, and Gang Qiao
The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, https://doi.org/10.5194/tc-16-737-2022, 2022
Short summary
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
Shi Li, Guojun Li, Yuan Cheng, Xuehui Pi, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W14-2025, 137–142, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-137-2025, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-137-2025, 2025
Guojun Li, Tong Hao, Zhongbo Huang, Chen Lv, Liang Tang, Shi Li, Xiangbin Cui, Bo Sun, Kenichi Matsuoka, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W14-2025, 113–119, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-113-2025, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-113-2025, 2025
Jianzhuo Xu, Manuel Garramone, and Marco Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W3-2025, 49–56, https://doi.org/10.5194/isprs-annals-X-5-W3-2025-49-2025, https://doi.org/10.5194/isprs-annals-X-5-W3-2025-49-2025, 2025
Marco Scaioni, Huiyi Xu, Luigi Barazzetti, Manuel Garramone, and Nicola Genzano
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W3-2025, 109–116, https://doi.org/10.5194/isprs-archives-XLVIII-5-W3-2025-109-2025, https://doi.org/10.5194/isprs-archives-XLVIII-5-W3-2025-109-2025, 2025
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
The Cryosphere, 19, 4373–4390, https://doi.org/10.5194/tc-19-4373-2025, https://doi.org/10.5194/tc-19-4373-2025, 2025
Short summary
Short summary
We incorporate ice damage processes into an ice-sheet model and apply the new model to Thwaites Glacier. The upgraded model more accurately captures the observed ice mass loss of Thwaites Glacier over 1990–2020. Our simulations show that ice damage has a notable impact on the ice mass loss, grounding-line retreat, ice velocity, and ice thickness of the Thwaites Glacier basin. This study highlights the necessity for incorporating ice damage into ice-sheet models.
Jianzhuo Xu, Manuel Garramone, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 1631–1638, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1631-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1631-2025, 2025
Fei Zhu, Meilin Zhu, and Lu An
EGUsphere, https://doi.org/10.5194/egusphere-2025-2579, https://doi.org/10.5194/egusphere-2025-2579, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Using on-site measurements and a new detection method, we found the 2022 summer heatwave caused unprecedented melting at the source of China’s Yangtze River and Tibet’s largest lake. Over 52 days, melting accounted for 65.2 % of the year’s ice loss—doubling previous summers. This extreme event, driven by persistent heat and unusual weather patterns, shows how rapidly vital water sources can disappear.
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Rasoul Eskandari, Nicola Genzano, Davide Fugazza, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 147–154, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024, 2024
Penglan Luo, Gang Qiao, Zhi Qu, and Sergey Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, 2024
Rasoul Eskandari and Marco Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 131–138, https://doi.org/10.5194/isprs-annals-X-3-2024-131-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-131-2024, 2024
Jianzhuo Xu, Manuel Garramone, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 161–166, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-161-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-161-2024, 2024
Nicola Genzano, Davide Fugazza, Rasoul Eskandari, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 99–106, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024, 2024
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
Zheyi Cao, Leyue Tang, Xiaohan Yuan, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, 2024
Hongwei Li, Youquan He, Yuanyuan Gu, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 323–328, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, 2024
Y. Cao and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 147–153, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-147-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-147-2023, 2023
R. Eskandari and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1235–1241, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1235-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1235-2023, 2023
Y. Cao and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W3-2023, 31–37, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-31-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-31-2023, 2023
J. Xu, M. Garramone, Y. Wang, and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 1645–1652, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1645-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1645-2023, 2023
M. Garramone, D. Jovanovic, D. Oreni, L. Barazzetti, M. Previtali, F. Roncoroni, A. Mandelli, and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 653–660, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-653-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-653-2023, 2023
R. Eskandari and M. Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-M-1-2023, 79–86, https://doi.org/10.5194/isprs-annals-X-M-1-2023-79-2023, https://doi.org/10.5194/isprs-annals-X-M-1-2023-79-2023, 2023
M. Garramone and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W2-2023, 37–42, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-37-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-37-2023, 2023
J. Xu and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W2-2023, 117–124, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-117-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-117-2023, 2023
M. Previtali, L. Barazzetti, F. Roncoroni, Y. Cao, and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 411–416, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-411-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-411-2023, 2023
M. Scaioni, A. Malekian, and D. Fugazza
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 293–300, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023, 2023
A. Malekian, D. Fugazza, and M. Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 459–466, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-459-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-459-2023, 2023
R. Eskandari and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W2-2022, 31–38, https://doi.org/10.5194/isprs-archives-XLVIII-4-W2-2022-31-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W2-2022-31-2023, 2023
M. Garramone and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 39–45, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-39-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-39-2022, 2022
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
K. Lin, G. Qiao, L. Zhang, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 765–770, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, 2022
L. Wang, G. Qiao, I. V. Florinsky, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 785–791, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, 2022
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Y. Cao and M. Scaioni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 219–226, https://doi.org/10.5194/isprs-annals-V-2-2022-219-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-219-2022, 2022
Rongxing Li, Yuan Cheng, Haotian Cui, Menglian Xia, Xiaohan Yuan, Zhen Li, Shulei Luo, and Gang Qiao
The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, https://doi.org/10.5194/tc-16-737-2022, 2022
Short summary
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
M. Garramone, E. Tonelli, and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-5-W1-2022, 95–102, https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-95-2022, https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-95-2022, 2022
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
Piera Belotti, Fabio Conzi, Chiara Dell’Orto, Maurizio Federici, Luigi Fregonese, Gabriele Garnero, Emilio Guastamacchia, Franco Guzzetti, Livio Pinto, and Marco Scaioni
Proc. Int. Cartogr. Assoc., 4, 12, https://doi.org/10.5194/ica-proc-4-12-2021, https://doi.org/10.5194/ica-proc-4-12-2021, 2021
Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li
The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, https://doi.org/10.5194/tc-15-3083-2021, 2021
Short summary
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
Y. Cao and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 449–456, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-449-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-449-2021, 2021
M. Previtali, M. Garramone, and M. Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 229–235, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-229-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-229-2021, 2021
T. Chang, J. Han, Z. Li, Y. Wen, T. Hao, P. Lu, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 437–442, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, 2021
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
Y. He, G. Qiao, H. Li, X. Yuan, and Y. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 463–468, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, 2021
Y. Li, G. Qiao, and X. Yuan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 485–490, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, 2021
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
Z. Sun and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 503–508, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, 2021
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021
H. Zhao, R. Xu, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 527–532, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, 2021
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, 10.1038/s41561-020-0616-z, 2020.
Alley, R. B., Cuffey, K. M., Bassis, J. N., Alley, K. E., Wang, S., Parizek, B. R., Anandakrishnan, S., Christianson, K., and DeConto, R. M.: Iceberg Calving: Regimes and Transitions, Annual Review of Earth and Planetary Sciences, 51, 189–215, https://doi.org/10.1146/annurev-earth-032320-110916, 2023.
Allison, I., Alley, R. B., Fricker, H. A., Thomas, R. H., and Warner, R. C.: Ice sheet mass balance and sea level, Antarctic Sci., 21, 413–426, https://doi.org/10.1017/S0954102009990137, 2009.
Anderson, N. T. and Marchisio, G. B.: WorldView-2 and the evolution of the DigitalGlobe remote sensing satellite constellation: introductory paper for the special session on WorldView-2, in: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, 2012/05/14, 166–180, https://doi.org/10.1117/12.919756, 2012.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat image mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Brunt, K. M., Neumann, T. A., and Smith, B. E.: Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet, Geophys. Res. Lett., 46, 13072–13078, https://doi.org/10.1029/2019GL084886, 2019.
Cassotto, R. K., Burton, J. C., Amundson, J. M., Fahnestock, M. A., and Truffer, M.: Granular decoherence precedes ice mélange failure and glacier calving at Jakobshavn Isbræ, Nat. Geosci., 14, 417–422, 2021.
Davis, P. E. D., Jenkins, A., Nicholls, K. W., Dutrieux, P., Schröder, M., Janout, M. A., Hellmer, H. H., Templeton, R., and McPhail, S.: Observations of Modified Warm Deep Water Beneath Ronne Ice Shelf, Antarctica, From an Autonomous Underwater Vehicle, J. Geophys. Res. Oceans, 127, e2022JC019103, https://doi.org/10.1029/2022JC019103, 2022.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
DiMarzio, J., Brenner, A., Schutz, R., Shuman, C. A., and Zwally, H. J.: GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, National Snow and Ice Data Center, https://doi.org/10.5067/K2IMI0L24BRJ, 2007.
Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P., and Young, N. W.: Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica, Nature, 391, 778–780, https://doi.org/10.1038/35832, 1998.
Feng, T., Li, Y., Wang, K., Qiao, G., Cheng, Y., Yuan, X., Luo, S., and Li, R.: A hierarchical network densification approach for reconstruction of historical ice velocity fields in East Antarctica, J. Glaciol., 1–20, https://doi.org/10.1017/jog.2022.58, 2022.
Ferrigno, J. G. and Gould, W. G.: Substantial changes in the coastline of Antarctica revealed by satellite imagery, Polar Record, 23, 577–583, https://doi.org/10.1017/S003224740000807X, 1987.
Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M., and Heil, P.: Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf, The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, 2021.
Fricker, H. A., Young, N. W., Coleman, R., Bassis, J. N., and Minster, J.-B.: Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL021036, 2005.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nature Climate Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/IMR9D3PEI28U, 2019.
Greene, C. A., Gardner, A. S., Schlegel, N.-J., and Fraser, A. D.: Antarctic calving loss rivals ice-shelf thinning, Nature, 609, 948–953, https://doi.org/10.1038/s41586-022-05037-w, 2022.
Grosfeld, K., Schröder, M., Fahrbach, E., Gerdes, R., and Mackensen, A.: How iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf-Ocean System, J. Geophys. Res. Oceans, 106, 9039–9055, https://doi.org/10.1029/2000JC000601, 2001.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Howat, I., Porter, C., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: The Reference Elevation Model of Antarctica – Strips, Version 4.1 (V1), Harvard Dataverse, https://doi.org/10.7910/DVN/X7NDNY, 2022.
Hulbe, C. L., LeDoux, C., and Cruikshank, K.: Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation, J. Glaciol., 56, 459–472, https://doi.org/10.3189/002214310792447743, 2010.
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.: Melting of ice shelves and the mass balance of Antarctica, J. Glaciol., 38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992.
Joughin, I. and MacAyeal, D. R.: Calving of large tabular icebergs from ice shelf rift systems, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL020978, 2005.
King, E. C.: Observations of a rift in the Ronne Ice Shelf, Antarctica, J. Glaciol., 40, 187–189, https://doi.org/10.3189/S0022143000003968, 1994.
King, M. A., Padman, L., Nicholls, K., Clarke, P. J., Gudmundsson, G. H., Kulessa, B., and Shepherd, A.: Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validation, J. Geophys. Res. Oceans, 116, https://doi.org/10.1029/2011JC006949, 2011.
Larour, E., Rignot, E., and Aubry, D.: Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020077, 2004.
Larour, E., Rignot, E., Poinelli, M., and Scheuchl, B.: Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68, Proceedings of the National Academy of Sciences, 118, e2105080118, https://doi.org/10.1073/pnas.2105080118, 2021.
Li, R.: Potential of high-resolution satellite imagery for national mapping products, Photogrammetric Engineering and Remote Sensing, 64, 1165–1170, 1998.
Li, R., Xiao, H., Liu, S., and Tong, X.: A Systematic Study of the Fracturing of Ronne - Filchner Ice Shelf, Antarctica, Using Multisource Satellite Data from 2001 to 2016, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2017-178, 2017a.
Li, R., Ye, W., Qiao, G., Tong, X., Kong, F., Liu, S., and Ma X.: A new analytical method for estimating Antarctic ice flow in 1960s from historical optical satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, 55, 2771–2785, https://doi.org/10.1109/TGRS.2017.2654484, 2017b.
Li, R., Li, H., Hao, T., Qiao, G., Cui, H., He, Y., Hai, G., Xie, H., Cheng, Y., and Li, B.: Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic Research Expedition (CHINARE) route, East Antarctica, based on coordinated multi-sensor observations, The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, 2021.
Li, R., Cheng, Y., Cui, H., Xia, M., Yuan, X., Li, Z., Luo, S., and Qiao, G.: Overestimation and adjustment of Antarctic ice flow velocity fields reconstructed from historical satellite imagery, The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, 2022.
Li, R., Cheng, Y., Chang, T., Gwyther, D. E., Forbes, M., An, L., Xia, M., Yuan, X., Qiao, G., Tong, X., and Ye, W.: Satellite record reveals 1960s acceleration of Totten Ice Shelf in East Antarctica, Nat. Commun., 14, 4061, https://doi.org/10.1038/s41467-023-39588-x, 2023a.
Li, T., Hu, Y., Liu, B., Jiang, L., Wang, H., and Shen, X.: Co-registration and residual correction of digital elevation models: a comparative study, The Cryosphere, 17, 5299–5316, https://doi.org/10.5194/tc-17-5299-2023, 2023b.
Liu, H., Jezek, K., Li, B., and Zhao, Z.: Radarsat Antarctic Mapping Project digital elevation model version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8JKNEW6BFRVD, 2001.
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H., Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proceedings of the National Academy of Sciences, 112, 3263–3268, https://doi.org/10.1073/pnas.1415137112, 2015.
Lv, D., Cheng, Y., Xiao, H., and Hai, G.: A Framework for Fracture Extraction Under Glaciological Property-Based Constraints: Scientific Application on the Filchner–Ronne Ice Shelf of Antarctica, Earth and Space Science, 9, e2022EA002293, https://doi.org/10.1029/2022EA002293, 2022.
Magruder, L. A., Brunt, K. M., and Alonzo, M.: Early ICESat-2 on-orbit Geolocation Validation Using Ground-Based Corner Cube Retro-Reflectors, Remote Sensing, 12, 3653, https://doi.org/10.3390/rs12213653, 2020.
Magruder, L., Neumann, T., and Kurtz, N.: ICESat-2 Early Mission Synopsis and Observatory Performance, Earth and Space Science, 8, e2020EA001555, https://doi.org/10.1029/2020EA001555, 2021.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
McGlone, J., Mikhail, E., Bethel, J., and Mullen, R.: Manual of photogrammetry, 5th ed., American Society for Photogrammetry and Remote Sensing, ISBN 978-1570830716, 2004.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., and Fretwell, P.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Neuburg, H. A. C., Thiel, E., Walker, P. T., Behrendt, J. C., and Aughenbaugh, N. B.: The Filchner Ice Shelf, Annals of the Association of American Geographers, 49, 110–119, https://doi.org/10.1111/j.1467-8306.1959.tb01603.x, 1959.
Noh, M.-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions, GIScience & Remote Sensing, 52, 198–217, https://doi.org/10.1080/15481603.2015.1008621, 2015.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N.-J., Amory, C., van den Broeke, M. R., Horwath, M., Joughin, I., King, M. D., Krinner, G., Nowicki, S., Payne, A. J., Rignot, E., Scambos, T., Simon, K. M., Smith, B. E., Sørensen, L. S., Velicogna, I., Whitehouse, P. L., A, G., Agosta, C., Ahlstrøm, A. P., Blazquez, A., Colgan, W., Engdahl, M. E., Fettweis, X., Forsberg, R., Gallée, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B. C., Harig, C., Helm, V., Khan, S. A., Kittel, C., Konrad, H., Langen, P. L., Lecavalier, B. S., Liang, C.-C., Loomis, B. D., McMillan, M., Melini, D., Mernild, S. H., Mottram, R., Mouginot, J., Nilsson, J., Noël, B., Pattle, M. E., Peltier, W. R., Pie, N., Roca, M., Sasgen, I., Save, H. V., Seo, K.-W., Scheuchl, B., Schrama, E. J. O., Schröder, L., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T. C., Vishwakarma, B. D., van Wessem, J. M., Wiese, D., van der Wal, W., and Wouters, B.: Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020, Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, 2023.
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A new tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34, 247–254, https://doi.org/10.3189/172756402781817752, 2002.
Padman, L., Erofeeva, S. Y., and Fricker, H. A.: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035592, 2008.
Poinelli, M., Schodlok, M., Larour, E., Vizcaino, M., and Riva, R.: Can rifts alter ocean dynamics beneath ice shelves?, The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, 2023a.
Poinelli, M., Nakayama, Y., Larour, E., Vizcaino, M., and Riva, R.: Ice-Front Retreat Controls on Ocean Dynamics Under Larsen C Ice Shelf, Antarctica, Geophys. Res. Lett., 50, e2023GL104588, https://doi.org/10.1029/2023GL104588, 2023b.
Rignot, E. and MacAyeal, D. R.: Ice-shelf dynamics near the front of the Filchner–Ronne Ice Shelf, Antarctica, revealed by SAR interferometry, J. Glaciol., 44, 405–418, https://doi.org/10.3189/S0022143000002732, 1998.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, Proceedings of the National Academy of Sciences, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica, The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, 2019.
Shen, X., Ke, C.-Q., Fan, Y., and Drolma, L.: A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2, Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022, 2022.
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER GDEM version 2, 2011 IEEE international geoscience and remote sensing symposium, Vancouver, BC, Canada, 3657–3660, https://doi.org/10.1109/IGARSS.2011.6050017, 2011.
Thompson, S. S., Cook, S., Kulessa, B., Winberry, J. P., Fraser, A. D., and Galton-Fenzi, B. K.: Comparing satellite and helicopter-based methods for observing crevasses, application in East Antarctica, Cold Regions Science and Technology, 178, 103128, https://doi.org/10.1016/j.coldregions.2020.103128, 2020.
Walker, C. and Gardner, A.: Evolution of ice shelf rifts: Implications for formation mechanics and morphological controls, Earth Planet. Sci. Lett., 526, 115764, https://doi.org/10.1016/j.epsl.2019.115764, 2019.
Walker, C. C., Becker, M. K., and Fricker, H. A.: A High Resolution, Three-Dimensional View of the D-28 Calving Event From Amery Ice Shelf With ICESat-2 and Satellite Imagery, Geophys. Res. Lett., 48, e2020GL091200, https://doi.org/10.1029/2020GL091200, 2021.
Wang, S., Liu, H., Jezek, K., Alley, R. B., Wang, L., Alexander, P., and Huang, Y.: Controls on Larsen C Ice Shelf Retreat From a 60-Year Satellite Data Record, J. Geophys. Res.-Earth Surf., 127, e2021JF006346, https://doi.org/10.1029/2021JF006346, 2022.
Wang, T., Zhang, G., Li, D., Tang, X., Jiang, Y., Pan, H., Zhu, X., and Fang, C.: Geometric Accuracy Validation for ZY-3 Satellite Imagery, IEEE Geosci. Remote Sens. Lett., 11, 1168–1171, https://doi.org/10.1109/LGRS.2013.2288918, 2014.
Wessel, B., Huber, M., Wohlfart, C., Bertram, A., Osterkamp, N., Marschalk, U., Gruber, A., Reuß, F., Abdullahi, S., Georg, I., and Roth, A.: TanDEM-X PolarDEM 90 m of Antarctica: generation and error characterization, The Cryosphere, 15, 5241–5260, https://doi.org/10.5194/tc-15-5241-2021, 2021.
Williams, R. M., Ray, L. E., Lever, J. H., and Burzynski, A. M.: Crevasse Detection in Ice Sheets Using Ground Penetrating Radar and Machine Learning, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 7, 4836–4848, https://doi.org/10.1109/JSTARS.2014.2332872, 2014.
Xia, M., Li, R., Scaioni, M., An, L., Li, Z. and Qiao, G.: MDAM, GitHub [code], https://github.com/menglianxia/MDAM (last access: 2 December 2025), 2025a.
Xia, M., Li, R., Scaioni, M., An, L., Li, Z. and Qiao, G.: Dataset belonging to the article ”Building multi-satellite DEM time series for insight into mélange inside large rifts in Antarctica”, Zenodo [data set], https://doi.org/10.5281/zenodo.15260323, 2025b.
Zinck, A.-S. P., Wouters, B., Lambert, E., and Lhermitte, S.: Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica, The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023, 2023.
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in...