Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-6207-2025
https://doi.org/10.5194/tc-19-6207-2025
Research article
 | 
26 Nov 2025
Research article |  | 26 Nov 2025

Regime-dependence when constraining a sea ice model with observations: lessons from a single-column perspective

Molly M. Wieringa and Cecilia M. Bitz

Related authors

Sea Ice Albedo Bounded Data Assimilation and Its Impact on Modeling: A Regional Approach
Joseph Fortunato Rotondo, Molly Michael Wieringa, Cecilia Marie Bitz, Robin Clancy, and Steven Cavallo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2540,https://doi.org/10.5194/egusphere-2025-2540, 2025
Short summary
Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024,https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary

Cited articles

Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz, N. T., Phelps, M. W., Posey, P. G., Tilling, R., and Wallcraft, A. J.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system, Adv. Space Res., 62, 1265–1280, https://doi.org/10.1016/J.ASR.2017.12.030, 2018. a, b
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. a
Anderson, J. L.: A quantile-conserving ensemble filter framework. Part II: Regression of observation increments in a probit and probability integral transformed space, Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-23-0065.1, 2023. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Wea. Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano A.: The Data Assimilation Research Testbed: A community facility, Bull. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. a, b
Download
Short summary
Integrating observations into complex sea ice models improves model estimates, but the impact of specific kinds of observations may vary in space and time. By modeling sea ice at single locations, this work quantifies the impact of four different observation kinds on sea ice at three characteristic locations in the Arctic. The results indicate that this simplified experimental framework is a useful tool for developing methods to meld new and existing observations with modern sea ice models.
Share