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Abstract. A substantial body of work has explored the use
of sea ice concentration (SIC) and sea ice thickness (SIT) ob-
servations to initialize modeled estimates of the unobserved
Arctic sea ice state via data assimilation (DA). While many
recent studies have highlighted the particular value of incor-
porating SIT observations to this end, the influence of lo-
cal sea ice conditions on the efficacy of assimilating var-
ious observation types has not been sufficiently evaluated.
This work utilizes a single-column sea ice model to repre-
sent three common Arctic sea ice regimes: pack ice, seasonal
ice, and first-year ice. An ensemble data assimilation frame-
work is then used to assimilate synthetic observations of SIC,
SIT, and two types of sea ice freeboard in each regime. Re-
sults demonstrate substantial variation in observation effi-
cacy across observation types and sea ice conditions. In par-
ticular, SIT and laser altimeter freeboard observations are
found to have a broadly positive impact in thick ice regimes,
while SIC effectively constrains thinner, more marginal sea
ice regimes. A need for regime-tailored DA strategies and
further experimentation with underutilized sea ice observa-
tion types is strongly implied.

1 Introduction

Constraining sea ice models with observations is critical for
accurately estimating unobservable aspects of the sea ice sys-
tem and for making reliable predictions of sea ice, weather,
and climate conditions. Uncertainties in initial sea ice con-
centration (SIC), sea ice thickness (SIT), and snow proper-
ties can propagate and become persistent model biases. Data
assimilation (DA) systems aim to mitigate these initial condi-

tion errors by integrating observations into model estimates
of the state, but current sea ice observing systems and sea
ice models present unique challenges. The relative efficacy
of assimilating available observation types remains insuffi-
ciently quantified, and the processes by which new observa-
tion types are evaluated in existing DA systems can be expen-
sive and difficult to interpret. Additionally, many previous
sea ice DA studies have focused on pan-Arctic assimilation
with complex DA schemes, masking regime-dependent DA
performance in regions such as the multiyear ice pack, the
seasonal or marginal ice zone, and first-year ice edge, all of
which are characterized by unique thermodynamic and dy-
namic processes (Bitz and Roe, 2004; Maslanik et al., 2011;
Årthun et al., 2012; Allard et al., 2018).

Using a recently introduced sea ice single-column en-
semble data assimilation framework (CICE-SCM-DART;
Wieringa et al., 2024; Riedel et al., 2025), this study eval-
uates how assimilating observations of SIC, SIT, and two
types of sea ice freeboard – derived from radar and laser al-
timetry technologies – impacts the analysis of sea ice states
across three distinct sea ice regimes. The CICE-SCM-DART
framework provides an ideal testbed for isolating the DA im-
pact on sea ice initial conditions. By simulating three single-
column sea ice regimes – including (1) thick, deformed ice
with substantial snow accumulation; (2) thinner, seasonal ice
that experiences rapid growth and melt cycles; and (3) very
thin, first-year sea ice that must re-form after each melt sea-
son – the impact of assimilating observations is efficiently lo-
calized to a single-grid cell and the effects of large-scale ad-
vection are excluded. The lightweight nature of CICE-SCM-
DART enables rapid experimentation in each regime and al-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6208 M. M. Wieringa and C. M. Bitz: Regime-dependence when constraining a sea ice model with observations

lows for a systematic isolation of the contributions of obser-
vation type and regional ice processes to DA performance.

The observation types selected for this study are either al-
ready commonly assimilated (SIC), have been widely tested
but are subject to practical limitations (SIT), or are underex-
plored but present promising avenues for sea ice initializa-
tion (freeboard). Passive microwave SIC observations pro-
vide broad spatial and high-frequency temporal coverage and
have been widely assimilated into various sea ice and fore-
casting models (e.g. Lisæter et al., 2003; Schweiger et al.,
2011; Posey et al., 2015), but they lack vertical ice infor-
mation and do not effectively constrain estimates of sea ice
thickness (Zhang et al., 2018). On the other hand, SIT ob-
servations have been shown to positively impact both sea
ice volume and sea ice coverage estimates when assimilated
(Lindsay and Zhang, 2006; Sakov et al., 2012; Yang et al.,
2014; Ricker et al., 2017; Chen et al., 2017; Allard et al.,
2018; Blockley and Peterson, 2018; Mu et al., 2018a, b; Xie
et al., 2018; Zhang et al., 2018; Fritzner et al., 2019; Yang
et al., 2020; Balan-Sarojini et al., 2021; Fiedler et al., 2022;
Mignac et al., 2022; Cheng et al., 2023; Min et al., 2023;
Williams et al., 2023; Zhang et al., 2023; Riedel and An-
derson, 2024). In practice, SIT estimates are prone to tem-
poral and spatial availability issues; additionally, remotely-
sensed SIT observations are typically retrieved from altime-
try measurements of sea ice freeboard, a process which re-
quires ancillary snow data (Kwok and Cunningham, 2015;
Petty et al., 2023) and introduces uncertainties that can limit
the efficacy of the DA process (Petty et al., 2023). Conver-
sion from freeboard to SIT also depends on the type of al-
timeter sensor used to take measurements. Radar altimetry
(e.g. CryoSat-2; Kurtz and Harbeck, 2017) penetrates snow
layers to make measurements of the height of the snow-ice
interface, whereas laser altimeters (e.g. ICESat-2; Kwok et
al., 2023) capture the total freeboard height, including the
snow atop the sea ice. Both radar freeboard (FBR) and laser
freeboard (FBL) measurements are less uncertain than SIT
measurements derived from them. Due to the seasonal cy-
cle of snow accumulation, however, FBR and FBL can differ
substantially and are not necessarily synchronized to the SIT
seasonal cycle or each other (Fig. 2). Though a few studies
have explored freeboard assimilation (Sievers et al., 2023;
Mathiot et al., 2012), the comparative impact of these two
types of freeboard observation is generally absent from ex-
isting literature.

Using a perfect-model approach, this study addresses three
key questions:

1. How does assimilating SIC, SIT, FBR, or FBL observa-
tion impact the analyzed sea ice state in each of three
characteristic sea ice regimes?

2. Do radar and laser freeboard assimilation yield diver-
gent estimates of sea ice thickness and snow depth due
to their sensor-specific measurement approaches?

3. Which observation types most effectively constrain un-
observed sea ice model state variables in each sea ice
regime?

Though more realistic experimentation will be needed, this
work provides substantive insights and examples for those
seeking to optimize initial conditions for sea ice forecast-
ing and state estimation in the polar regions. The paper is
organized as follows: the methodology and experimental de-
sign are laid out in Sect. 2; results are presented in Sect. 3; a
discussion of the results and implications constitute Sect. 4;
Sect. 5 concludes.

2 Methods

Experiments are performed using the CICE-SCM-DART
framework (Wieringa et al., 2024; Riedel et al., 2025), which
couples the Data Assimilation Research Testbed (DART; An-
derson et al., 2009) to Icepack (Hunke et al., 2024b), the
column-physics package of the Community Ice CodE (CICE;
Hunke et al., 2024a) sea ice model. Icepack and DART are
reviewed individually in Sect. 2.1 and 2.2, respectively.

2.1 Icepack

To investigate the local impact of various sea ice obser-
vations on sea ice forecasting, Icepack is deployed as a
single-column representation of the sea ice state. Like CICE,
Icepack represents sea ice in each grid cell using a probability
density function. Commonly referred to as the ice thickness
distribution (ITD), this function describes the probability that
sea ice has a particular thickness within the grid cell. Resolv-
ing the ITD allows the model to represent a range of thick-
nesses in each grid cell. This improves the model evolution
of sea ice growth and melt, which are strong functions of sea
ice thickness (Thorndike et al., 1975). Practically, the ITD
resolves many sea ice variables in a discrete set of thickness
categories.

The primary sea ice state variables in Icepack – sea ice area
(Aice,n), sea ice volume (Vice,n), and snow volume (Vsno,n)
– have been discretized along the ITD and are hereafter re-
ferred to as “categorized” variables, where n indicates the
category number. Icepack simulations used in this study are
configured with 5 ITD categories, 3 snow layers, and 8 in-
ternal ice layers, as well as a mushy-layer thermodynamics
scheme (Turner et al., 2013) and a delta-Eddington short-
wave radiation scheme (Briegleb and Light, 2007; Holland
et al., 2012). The ITD categories are adjusted in response to
thermodynamic and dynamic evolution using a linear remap-
ping approach outlined by Lipscomb (2001).

While Icepack does not represent sea ice advection or mo-
tion in this single-column framework, it does include some
representation of sea ice ridging. The amount of ridging is
calculated from prescribed climatological rates of sea ice
opening and closing; these data are available from obser-
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vations taken during the SHEBA field campaign (Lindsay,
2002). During the ridging calculation, SIC is initially de-
creased as the ice converges. In earlier versions of Icepack,
the sea ice contraction was assumed to increase the open wa-
ter fraction. Sustained production of open water in a grid cell
is not typically the case in CICE, however, as advective pro-
cesses tend to replace the sea ice area fraction lost to ridging
in the larger model. More recent versions of Icepack allow
the user to address this discrepancy by instead choosing to
replace the contracted SIC by sea ice of the same thickness
distribution (Hunke et al., 2023). For this study, this newer
option is selected.

For each experiment performed in this study, Icepack is
used to generate a 30-member sea ice ensemble. Sea ice evo-
lution in each member is forced by surface atmospheric vari-
ables from a localized version of atmospheric forcing data
derived from the Japanese 55-year reanalysis (JRA55-do, see
Prior Ensemble for more details; Tsujino et al., 2018). Each
ensemble member is also coupled to a slab ocean. While
the atmospheric forcings supplied to each ensemble member
vary by small perturbations, the ocean initial conditions and
heat flux convergence forcing are identical for all ensemble
members and are derived from the ocean component output
of a fully-coupled historical simulation of the Community
Earth System Model (CESM2; Danabasoglu et al., 2020).

2.2 DART

DART is a modular ensemble DA program developed by
the Data Assimilation Research Section at the NSF National
Center for Atmospheric Research (Anderson et al., 2009).
DART has been used extensively for research purposes and
can be deployed into models of wide-ranging complexity and
scale. A range of algorithmic options allows a user to flexibly
tune the assimilation system, including a non-Gaussian filter-
ing framework, 5 inflation approaches and several options for
localization in large models.

In this study, DART is configured to assimilate observa-
tions using a non-Gaussian bounded rank histogram filter
(Anderson, 2023; Wieringa et al., 2024; Riedel et al., 2025)
and multiplicative inflation (Anderson and Anderson, 1999).
The localization radius is set to infinity, as Icepack repre-
sents a single, isolated location. Synthetically derived obser-
vations of SIC, SIT, FBR, and FBL are assimilated into the
model at daily timesteps. The weighted difference between
the observation and the model estimate is then used to up-
date the model’s categorized state variables (Aice,n, Vice,n,
and Vsno,n).

In contrast to the categorized structure of the sea ice
model, observations of sea ice area and sea ice thickness
are typically not probabilistic, but are instead point mea-
surements of a single quantity. Therefore, assimilating real-
istic observations of the sea ice state requires implementing
a translation, or forward operator, from the model’s catego-
rized variables to a modeled estimate of the observed quan-

tity. These forward operators are defined in DART for each
type of synthetic observation. For example, the SIT forward
operator relates the categorized state to SIT as

SIT=
5∑
n=1

Vice,n

Aice,n
. (1)

Similar expressions are defined in DART for SIC,

SIC=
5∑
n=1

Aice,n, (2)

and each of the freeboard observation types,

FBR=
5∑
n=1

Vice,n×

(
1−

ρi

ρw

)
−Vsno,n×

(
ρs

ρw

)
, (3)

and

FBL=
5∑
n=1

Vice,n×

(
1−

ρi

ρw

)
−Vsno,n×

(
ρs

ρw
− 1

)
, (4)

where ρi = 917.0 kg m−3, ρs = 330.0 kg m−3, and ρw =

1026.0 kg m−3 are assumed values for the density of ice,
snow, and sea water, respectively. Note that the only differ-
ence between FBR and FBL from the model’s perspective
is the addition of snow depth in laser altimeter freeboard
estimates. Since the forward operators tend to generate ob-
servation estimates by summing across the categorized state
variables, these quantities (e.g. SIT, SIC, FBL, and FBR) are
hereafter referred to as “aggregate” variables.

To ensure physical continuity, any nonphysical modeled
values of SIC or SIT after the assimilation completes are
post-processed to ensure that they do not violate physical
bounds on SIC ([0, 1]) or SIT ([0,∞]) or the requirements of
monotonically increasing midpoint thickness in the model’s
categorized ice thickness distribution. When using the non-
Gaussian filtering framework in DART, much of the need for
postprocessing is eliminated. However, the categorized na-
ture of the sea ice state variables can lead to inappropriate
values when attempting to constrain both sea ice area cat-
egories and total SIC (Wieringa et al., 2024; Grooms and
Riedel, 2024). Therefore, if the analysis SIC produced by the
DA filter is greater than 1.0, the postprocessing rescales the
individual ice area categories in the model as

A
pp
ice,n = A

a
ice,n×

1
SICa

, (5)

where superscript pp indicates the postprocessed values and
superscript a indicates the analysis values produced by the
DA filter. To ensure basic physical consistency, the ice vol-
umes in each category are recalculated using category mid-
point thicknesses,

V
pp
ice,n = A

pp
ice,n×hmid,n. (6)
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This ensures that individual category thicknesses
(vice,n/aice,n) will not (a) violate the assumption of mono-
tonically increasing thickness in the ITD; nor (b) violate the
thickness bounds of the categories themselves.

As a final step, the postprocessing addresses cases in
which the assimilation produced ice where there was no ice
in the prior. Volume in each category for which this occurs
is calculated according to Eq. (6). The column layer ice en-
thalpies and salinites are initialized as though the ice was
new, following extant conventions in Icepack. Similar con-
ventions are followed to initialize snow layer enthalpies if
the assimilation produces snow where there previously was
none. If the assimilation removes all the ice area from a cat-
egory, the ice and snow volumes, as well as the column en-
thalphies and salinities, are all set to 0.0.

2.3 Experimental Setup

The perfect-model experimental approach adopted in this
study reduces the complexity of the sea ice DA problem
by eliminating a few contributions to observational and
model uncertainty. The assimilated observations are drawn
from a randomly-selected member of a prior, unassimi-
lated sea ice model ensemble, nullifying the need to con-
sider model-observation mismatches attributable to imper-
fect model physics. In this work, the synthetically-derived
observations are also assumed to be perfectly representative
on the model grid, thereby eliminating scale-related uncer-
tainties. These conditions simplify the DA implementation,
but require that the results, as far as observation impact on
the sea ice state, be interpreted as a “best-case scenario”.

Each perfect model experiment uses CICE-SCM-DART
to assimilate daily sea ice observations into a prior sea ice
model ensemble. The prior ensembles have been config-
ured to represent three different sets of sea ice conditions
(“regimes”); synthetic observations are derived for SIT, SIC,
FBR, and FBL and assigned an observational uncertainty es-
timate. The subsequent sections describe model ensemble
configuration, observation derivations, and evaluative met-
rics in further detail.

2.3.1 Prior Ensembles

Ensemble DA requires a prior ensemble estimate of the sea
ice state, the variance of which provides a measure of prior
uncertainty. As this study is partially concerned with the im-
pact of DA across sea ice regime types, three prior ensembles
are considered (Table 1). The prior ensemble locations, each
of which represents an Arctic grid cell, are selected as repre-
sentative of various sea ice conditions that exist in the North-
ern Hemisphere; they are subsequently referred to as PACK
ICE, SEASONAL ICE, and FIRST-YEAR ICE. Delineation
between the three regime types is based on the annual cy-
cle of sea ice concentration. PACK ICE conditions are con-
sidered to be those for which ensemble mean SIC remains

Figure 1. Selected locations for each sea ice regime type. The Arc-
tic grid cells from which atmospheric conditions are drawn are
shown for each experimental ensemble. The red dot represents the
PACK ICE location at 88° N, 0° E; the blue dot is the SEASONAL
ICE location at 75.53° N, 174.45° E; the white dot is the FIRST-
YEAR ICE location at 75° N, 40° E. The annual mean sea ice con-
centration for a CICE6 ensemble during the same year as the single-
column experiments is plotted in shades of white to blue (SIC of 1 to
SIC of 0). The green contours represent annual mean SIC of > 0.8
(light green), > 0.5 (teal), and > 0.15 (navy blue).

above 0.8 throughout the year. The SEASONAL ICE regime
is then defined by ice locations that experience periods of en-
semble mean SIC greater than 0.8 and less than 0.15, and
FIRST-YEAR ICE is that for which all ensemble members
melted away completely during at least some portion of the
year. Based on these criteria, three locations in the Arctic
Ocean were selected to represent the respective regimes in
this work. Icepack itself is agnostic as to the location it is rep-
resenting – the atmosphere and ocean forcings produce sea
ice conditions representative of the intended regime. To gen-
erate an ensemble of sea ice states at each location, 30 ver-
sions of global atmospheric conditions are perturbed from the
JRA55-do by adding small amounts of noise to the dominant
patterns of interannual variability (see Appendix A). From
this perturbed atmosphere ensemble, the local surface con-
ditions at each location are extracted and rewritten to input
files for Icepack. Local initial conditions for each ensemble’s
slab ocean model were similarly extracted at each location
but are identical across each ensemble’s individual members.
The specific locations used to isolate these forcings are illus-
trated in Fig. 1.

Each of the three ensembles is spun up for a 10-year period
from atmospheric forcing year 2000 through 2010. While
this process allows the mean sea ice state to reach a relative
equilibrium, it also crucially allows the sea ice simulations to
diverge across the ensemble in response to perturbed atmo-
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Table 1. Characteristics of prior ensembles. The prior ensembles characterizing each of three sea ice regimes are outlined above, including
location, annual mean SIC and SIT, and maximum ensemble spread in SIC and SIT over the assimilation period.

Prior Ensemble Location Annual Mean Annual Mean Max. Ens. Max Ens.)
SIC SIT Spread (SIC) Spread (SIT)

PACK ICE 88° N, 0° E 0.971 3.396 0.036 0.378
SEASONAL ICE 75.53° N, 174.45° E 0.735 1.839 0.476 1.58
FIRST-YEAR ICE 75° N, 40° E 0.253 0.635 0.322 0.752

Figure 2. Annual evolution of FBR, FBL, and SIT. The annual cy-
cle of freeboard and sea ice thickness in various sea ice regimes
is shown for the TRUTH state in atmospheric forcing year 2011.
Model estimates of radar altimeter freeboard (FBR) are plotted as
the height of the snow-ice interface (light blue shaded region) above
0.0, while laser altimeter freeboard (FBL) estimates are plotted as
the height of the snow and ice surface (shaded ivory region) above
0.0. The total sea ice thickness is shown as the sum of the light blue
and teal shaded regions. Maximum FBR (light blue circle), FBL
(grey circle), and SIT (dashed blue line) are also plotted as illustra-
tions of the seasonal timing of each observation type.

spheric forcing. A 5-year ensemble for each location is then
produced using restarts from the end of each spin-up run and
atmospheric forcings from 2011 to 2016. These simulations
are known as the FREE runs and serve as control experiments
at each location (Fig. 3). Neither the spin-up nor the FREE
ensembles undergo any assimilation.

2.3.2 Observations

In a perfect-model experiment, observations are synthetically
derived from a randomly-selected member of the FREE en-
semble, hereafter referred to as the TRUTH. During the DA

Table 2. Observation error estimates as a function of observation
kind. Observation kind refers to the type of observation assimilated.
Observation error refers to the formula used to determine an indi-
vidual error estimate for each observation at each time step.

Observation Kind Observation Error

SIC σSIC =−0.5(SIC2
−SIC)

SIT σSIT = 0.1SIT
FBR σFBR ∈ [0.1,0.15]
FBL σFBL = 0.5FBL(1+ x),x ∈ (−1,1)

process, the TRUTH member is then subsequently withheld
from the ensemble. To ensure that the impact of DA on each
sea ice regime is compared across sea ice conditions that re-
flect the same Arctic atmosphere, the TRUTH member for
each regime is forced by atmospheric conditions that come
from the same randomly perturbed version of the JRA55-
do. In each regime, a prescribed observation error variance
value is added to generate a distribution around the value of
TRUTH at the desired time of observation. SIT, SIC, FBR,
and FBL observations are randomly drawn from this distri-
bution around the TRUTH ensemble member. The end result
is a set of observations that are intentionally “noisy” to within
expected observational errors (Fig. 4).

Observational errors are vastly simplified when prescribed
in the perfect-model framework. Because the observation
comes from the model itself, various kinds of representative-
ness error are avoided, including bias and the impact of miss-
ing physics. In this context, the error values can be thought of
as largely indicative of instrument uncertainty and observa-
tional pre-processing. The prescribed errors for each obser-
vation type used in this work are listed in Table 2. For a thor-
ough explanation of the estimation of observational errors for
these perfect-model experiments, please see Appendix B.

Observations are extracted from TRUTH every 24 h over
the course of atmospheric forcing year 2011. In all experi-
ments, the TRUTH is used as the validation data.

2.4 Evaluative Metrics

To quantify the impact of assimilating daily observations
in the reconstruction experiments, the mean absolute er-
ror (MAE) between the ensemble mean of each experiment
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Figure 3. Icepack FREE ensemble regimes. The sea ice state in each FREE ensemble is presented for atmospheric forcing year 2011 in
terms of SIC (top row), SIT (middle row), and SND (bottom). The annual evolution of each variable is presented in the dashed black line.
The ensemble spread, calculated as the maximum and minimum value across the ensemble at each timestep, is plotted as the grey envelope.
The individual ice thickness distribution categories for ice area (Aice,n, top row), ice volume (Vice,n, middle row), and snow volume (Vsno,n,
bottom row) are plotted in similar fashion in the colored lines and envelopes. Note that though ice and snow volume are not the same metric
as ice thickness and snow depth, the units in the single column model are equivalent for the purposes of plotting (m3 m−2 to m).

(EXP) and TRUTH is calculated. MAE, which is calculated
as,

MAE=
n∑
i

|EXPi −TRUTHi |
n

, (7)

represents the mean difference between the analysis and the
TRUTH over the course of the reconstruction period. Be-
cause the values of SIC and SIT vary across the PACK
ICE, SEASONAL ICE, and FIRST-YEAR ICE ensembles,
it might be expected that the magnitude of adjustments (and
therefore MAE) might also vary quite a bit. To general-
ize this metric for easy comparison of assimilation impact
across regimes, MAE is translated into a percent MAE re-
duction (pMAE) by normalizing each experiment’s MAE by
the FREE MAE,

pMAE= 100×
MAEFREE−MAEEXP

MAEFREE
. (8)

The results can then be interpreted outside the context of
mean state differences, and more easily compared in terms
of assimilation impact.

Statistically significant differences between reconstruc-
tion and initialization experiments, the FREE ensemble, and
TRUTH are determined using a Welch’s t-test. In this study,
significance should be interpreted with care, as the nature of
perfect model experiments may necessitate assimilating ob-
servations from a TRUTH that is not itself significantly dif-
ferent from the FREE ensemble mean.
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Figure 4. Synthetic observations extracted from a randomly selected member of the FREE ensembles. The observations, which are subse-
quently assimilated into the reconstruction and initialized hindcast experiments, are shown in grey lines for SIC (top row), SIT (second row),
FBR (third row), and FBL (bottom row) for each modeled ice regime. The TRUTH from which the observations are generated is shown in
the solid purple line, while the FREE ensemble mean is shown in the dashed black line. The observation error standard deviation (1σ ) is
shown as purple shading around TRUTH.

3 Results

Figures 3 and 5 demonstrate the ability of Icepack to capture
the chosen Arctic sea ice regimes. In the pack ice regime
(PACK ICE), which is forced by atmospheric conditions at
88N and 0E, SIC is always close to 1 and SIT is relatively
steady at 3–4 m (Fig. 3a, d). Snow depth (SND) exhibits a
strong seasonal cycle, and can exceed 70 cm near the boreal
spring sea ice maximum (Fig. 3g). As a consequence of the
near-total sea ice coverage and summertime surface temper-
atures that hover near freezing (Fig. A1 in Appendix A), the
modeled ensemble spread in PACK ICE SIC is quite small
(Fig. 3a; Table 1).

The second regime, based on more southerly conditions
in the Chukchi Sea (75.53° N, 174.45° E), is representative
of a seasonal ice environment (SEASONAL ICE), in which
sea ice retreats to low concentrations during the melt sea-
son and advances to complete coverage after freeze-up. In
this regime, modeled ensemble spread for SIC, SIT and SND

is relatively low (Fig. 3b, e, h; Table 1), as the ensemble is
constrained by atmospheric conditions that drive all ensem-
ble members toward maximal and minimal sea ice coverage,
with limited opportunity to diverge from one another in the
shoulder seasons. This occurs without any change to the en-
semble variance in atmospheric conditions, and is a feature
of sea ice boundedness in a regime that exhibits both sus-
tained freezing and melting conditions. Limited model en-
semble spread in seasonal ice regimes should be an expected
feature of sea ice data assimilation applications that requires
special attention to address.

The third regime represents first-year ice conditions
(FIRST-YEAR ICE) in the Barents Sea (75° N, 40° E), in
which sea ice retreats completely during the melt season and
advances as new growth each year. In contrast to the other
two regimes, FIRST-YEAR ICE has comparatively large
model ensemble spread in SIC (Fig. 3c; Table 1), due to the
sensitivity of new ice growth to the first date and persistence
of freezing conditions at this forcing location. Though total
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Figure 5. Icepack ensemble comparison to CICE6. Across-ensemble statistics in the three single-column sea ice regimes compared to a full
CICE6 simulation forced by the same atmospheric conditions are shown. In the left column, the SIC variance in time at each grid cell in
the CICE6 simulation for the period 2011–2016 is plotted in green against mean ice thickness at each grid cell in (a). SIT variance in time
is plotted in blue (c), and the covariance between SIT and SIC at each grid cell is plotted in pink (e). The same quantities for each member
of the regime ensembles are plotted for comparison, with PACK ICE ensemble members plotted in red triangles, SEASONAL ICE plotted
in blue squares, and FIRST-YEAR ICE plotted in black crosses. The color gradient for each plot represents latitude in CICE6, with lighter
shades of each color indicating more northerly locations. On the right, the variance across ensemble members for each Icepack ensemble
is plotted in the solid lines for SIC (b), SIT (d), and their covariance (panel f), using the same color assignment as in the left column. The
CICE6 variance or covariance at each day of year across the 2011–2016 time period is plotted in the shaded regions for the three grid cells
corresponding to the locations of the Icepack ensembles.

sea ice volume in this ensemble is quite low, ensemble spread
in SIT and SND is large compared to PACK ICE and SEA-
SONAL ICE, due to the large spread in SIC (Fig. 3f, i).

To examine how representative these ensembles are of ice
conditions in a fully-dimensional thermodynamic-dynamic
sea ice model, the model ensemble covariance relationship
between SIC and SIT in each regime is compared to the co-
variance range in a CICE6 ensemble simulation forced with
the same JRA55-do data atmosphere and ocean conditions
(Fig. 5). In the left column, SIC variance, SIT variance, and
their covariance over the 2011–2016 FREE run period are
plotted as a function of mean thickness for all Arctic grid
cells in the CICE6 simulation and for all members of each
Icepack regime ensemble (panels a, c, e). In the right col-
umn, the daily variances and covariances across each Icepack
ensemble (solid lines) are compared to the daily covariance
of the corresponding grid cell from the CICE6 simluation
(shaded regions) over the 5 year FREE period (panels b, d,
f). In general, the single-column ensembles capture reason-
able sea ice variance across their respective regimes, fitting
in nicely to the distribution of Arctic grid cells and mirror-

ing the timing of variance peaks and troughs at correspond-
ing grid cell locations in CICE6. Though the PACK ICE grid
cell appears to be a particularly low-variance selection (pan-
els a, c), both daily SIC and SIT variance are underestimated
in Icepack (Fig. 5b and d), due at least in part to the absence
of sea ice dynamics in the column model. In addition to a
lack of sea ice advection (which would generate a sort of Eu-
lerian variability), ridging also leads to increased SIT vari-
ability are under-represented in the Icepack ensembles. De-
spite this, the single-column model regimes mimic the ice
conditions in a more complex model relatively well, lending
credence to their use as testing ground for sea ice DA.

Results are subdivided into (a) the impact of assimilating
each observation type in each location on the model’s esti-
mates of those same observable quantities; and (b) the obser-
vations’ impact on the each category of the model’s underly-
ing state variables.

3.1 Impact on the aggregate state

Figure 6a, c, e shows the ensemble mean sea ice volume
result when assimilating SIC, SIT, FBR, and FBL observa-
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tions, compared to the unassimilated FREE mean and the
TRUTH ensemble member. While later sections will quan-
tify the impact of assimilation on the observable variables
themselves, aggregate sea ice volume provides an intelligi-
ble first perspective on how assimilating observations adjusts
the sea ice state within a grid cell. In PACK ICE, SIT and
freeboard observations tend to adjust the model’s ice volume
most toward the TRUTH, particularly in the latter half of the
year, when ensemble spread in volume during this year in-
creases. SIT observations demonstrate a particularly notice-
able adjustment year round, which weakens only during the
late summer months. Over the early part of the year, FBL ob-
servations have a negligible impact on sea ice volume, while
FBR observations begin to have a positive impact in April.
In contrast, SIC observations have a minimal to negative im-
pact on recovering the PACK ICE TRUTH’s ice volume at
any time.

In SEASONAL ICE, the adjustments to sea ice volume are
harder to evaluate visually, due to the narrow modeled en-
semble spread in this regime. The consistent lack of spread
is due to the highly seasonal nature of ice growth and melt
in seasonal conditions. Because atmospheric conditions in
this regime constrain nearly all ensemble members to full ice
cover in the winter months, and strong feedbacks accelerate
the loss of ice to near-zero in the summer months, ensem-
ble spread is constrained to low values during these SIC ex-
tremes, limiting the period of appreciable ensemble spread to
the freeze-up and melt seasons. What spread does arise dur-
ing these shoulder seasons is largely the result of the timing
with which each ensemble member begins freezing in fall
and finishes melting the following summer. Despite the lack
of spread, it can be noted that SIT observations again appear
to reasonably recover the TRUTH for much of the year, with
the exception of the early summer months. Freeboard and
SIC observations again appear to do very little prior to July,
but by the time freeze-up commences in the fall, all four ob-
servation kinds have adjusted the ensemble mean ice volume
away from the unassimilated FREE case and toward TRUTH.

The primary efficacy of SIT observations for reconstruct-
ing sea ice volume declines slightly when examined in
FIRST-YEAR ICE. SIT observations still more success-
fully capture the TRUTH than the FREE ensemble, but
in this regime, where SIC ensemble spread is quite large
due to the sensitivity of new ice to small differences in
atmospheric conditions, SIC observations best recover the
TRUTH throughout much of the year. The impact of free-
board observations differs notably in this regime; FBR ob-
servations appear to have a totally negligible impact on sea
ice volume reconstruction in FIRST-YEAR ICE, while FBL
observations recover sea ice volume comparably to SIC ob-
servations.

At first glance, there are few cases in which assimilating
sea ice observations appears to positively impact aggregate
snow volume (Fig. 6b, d, f). In PACK ICE, FBL observations
adjust the model toward TRUTH for a short period in the

summer; by contrast, FBR observations degrade the model
estimate of snow volume during this period. FBL observa-
tions also exhibit a positive influence on modeled snow vol-
ume in the thin FIRST-YEAR ICE regime, as do SIT and
SIC observations, while FBR observations do little to adjust
the model from the unassimilated FREE state. None of the
assimilated variables demonstrate much impact on snow vol-
ume in SEASONAL ICE.

3.1.1 Annual comparative error reduction

A comprehensive evaluation of annual assimilation impact
on modeled observable variables is presented in Fig. 7. The
percent MAE reductions for ice thickness largely mirror the
results shown in terms of sea ice volume evolution in Fig. 6;
in the PACK ICE and SEASONAL ICE cases, SIT obser-
vations have the largest impact on reconstructing thickness,
followed by freeboard observations in PACK ICE and SIC
observations in SEASONAL ICE. SIC observations, which
have negative but insignificant impacts on all observable vari-
ables in PACK ICE, may constrain modeled SIC and SIT in
SEASONAL ICE conditions, and have a significant positive
impact on both modeled SIC and SIT in FIRST-YEAR ICE.
Across all regimes, SIT observations provide the strongest
constraint on modeled SIT. In thinner ice regimes, where
model ensemble spread in SIC is greater, SIC observations
most effectively constrain SIC conditions.

While none of the assimilated observation types have a
significant impact on modeled annual SND, this is partly
attributable to the fact that the TRUTH and FREE ensem-
ble mean snow depths are not themselves significantly dif-
ferent from one another over large stretches of the year,
especially in thicker ice regimes (not shown). The other-
wise apparent inability of SIC and SIT observations to re-
cover modeled snow depths aligns with a previous study that
demonstrated the need for SND observations to appropriately
constrain snow estimates in CICE5 (Riedel and Anderson,
2024). However, these experiments demonstrate that FBL
observations may positively impact SIC and SND estimates
in all regimes. While the magnitude of this impact varies,
FBL observations tend to slightly improve SIC and at min-
imum avoid degrading SND estimates. On the other hand,
FBR observations tend to improve estimates of SIT in thick
ice cases, but may have a negative impact on modeled SND
in across regimes. This is particularly true in the thick ice
regimes, where thick ice allows for heavy snow loads; while
the depth of snow increases, modeled FBR decreases as the
snow-ice interface is depressed by the weight of the snow.

3.1.2 Seasonal comparative error reduction

Because sea ice evolves seasonally, as does the sea ice en-
semble spread, annual mean results may mask periods of
greater or lesser impact. Figure 8 (winter, October–March)
and Fig. 9 (summer, April–September) explore this idea fur-
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Figure 6. Observation influence on reconstructed sea ice volume. The results of assimilating SIC (solid teal line), SIT (solid purple), FBR
(solid light blue), or FBL observations (solid dark blue) are shown in terms of sea ice volume for PACK ICE (top panel), SEASONAL ICE
(middle panel) and FIRST-YEAR ICE conditions (bottom panel). The black line represents the FREE case (without assimilation) and the
thin red lines are the randomly selected TRUTH. For the results shown, thick lines are ensemble means and shading represents the ensemble
standard deviation around the mean. Observations are assimilated at daily intervals throughout atmospheric forcing year 2011.

Figure 7. Annual bias reduction as a function of observation kind and sea ice conditions. Annual percent MAE reduction (pMAE) in
observable variables relative to the FREE forecast as a result of assimilating various observation kinds (x-axis) in each of three sea ice
regimes (PACK ICE, SEASONAL ICE, and FIRST-YEAR ICE, from left to right). Results are shown for modeled SIC (top row), SIT
(second row), and SND (bottom row) and are calculated across all months of the year. Blue colors indicate a more beneficial impact due to
assimilation, while red colors indicate a negative impact. The numbers indicate the specific pMAE associated with each experiment. Gray
shading indicates that the analysis (EXP) is not significantly different from the FREE ensemble mean.

ther. The summer pMAE looks qualitatively the same as the
annual relative error reductions, though the DA impact in
summertime conditions tends to be more saturated and sig-
nificant than in the annual perspective. Assimilating sum-
mertime observations thus largely dictates the sign of an-
nual error reduction, which is then diluted by the inclusion
of wintertime results. This is reasonable, given that ensem-
ble spread tends to increase in the summer months for most

variables, which enhances the influence of the observations
in the DA adjustment process.

Wintertime relative error reductions are qualitatively con-
sistent with annual pMAE reductions with a few notable ex-
ceptions (Fig. 8). In freezing conditions, modeled SIC es-
timates in PACK ICE are improved by assimilating any of
the observation types. Conversely, modeled SIT estimates in
SEASONAL ICE are degraded by all observation types. As
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Figure 8. Boreal winter pMAE reduction in observables. Same as Fig. 7 but where pMAE is calculated over October–March.

Figure 9. Boreal summer pMAE reduction in observables. Same as Fig. 7 but where pMAE is calculated over April–September.

implied by the lack of significance, improvements to SIC
in PACK ICE are small in magnitude, given the negligible
ensemble spread in SIC during this time. Negative impacts
to modeled SIT in wintertime SEASONAL ICE can be at-
tributed almost entirely to differences in timing of freeze-up
date in this strongly seasonal regime. Declines in SIT occur
rapidly after the onset of freezing conditions in SEASONAL
ICE, as ice area increases rapidly compare to ice volume
(Fig. 10). Small differences in the date of this rapid change
from the TRUTH lead to large MAE values over a relatively
short window of time, and an overall negative pMAE reduc-
tion. Over the rest of the winter period, the influence of DA
on the modeled SIT in SEASONAL ICE is broadly positive
(Fig. 10).

3.2 Impact on the sea ice state

Since observable variables in Icepack are aggregates of the
model’s categorized variables, understanding the assimila-
tion impact on SIT, SIC, and SND also requires understand-
ing how assimilating observations impacts Aice,n, Vice,n, and
Vsno,n. The aggregation from model state variable to observ-
able quantity occurs once in the beginning of the DA fil-
tering process, to compare observations to model estimates
of the observable quantities, and then again after the filter
has been applied, to diagnose the adjusted modeled estimates

Figure 10. Observation influence on sea ice thickness in SEA-
SONAL ICE. Same as Fig. 6 but where the y-axis represents SIT.
Note the large single-day differences between each experiment (col-
ored lines) and the TRUTH (red line) around the fall freeze-up
event, when SIT declines rapidly as sea ice area expands.

of SIC, SIT, and SND. During the filtering process, the dif-
ference between the model estimates of observables and the
observations themselves are regressed onto each category of
Icepack’s state variables using the model ensemble error co-
variance relationship between the observable quantities and
the categorized variable in question. Any impact on an ob-
servable quantity is therefore a product of how the observa-
tions adjusted the categorized state variables.

In some cases for which modeled observables (e.g. SIC)
are straightforward aggregations of the model’s state vari-
ables (Aice,n), the link between assimilation impact on state
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variables and modeled observables is more intuitive. In Figs.
11 and 12, assimilating SIC observations in PACK ICE has a
negative impact on ice area and ice volume estimates in ev-
ery thickness category; it is therefore no surprise that assim-
ilating SIC observations has an overall negative impact on
aggregated SIC and SIT in the PACK ICE regime (Fig. 7).
However, improvement in individual categories does not au-
tomatically equate to improvement in the aggregate modeled
observables. For example, in the same PACK ICE regime,
assimilating SIT observations is found to significantly posi-
tively impact 3 of 5 Aice,n categories, yet has an insignificant
negative impact on modeled SIC. Likewise, assimilating FBL
observations produces a positive (though still insignificant)
impact on modeled SIC, even though these observations also
significantly positively impacted the same 3 of 5 ice area cat-
egories.

The most contrary results for sea ice area and volume tend
to occur in the PACK ICE regime, where the representation
of sea ice on a grid and the categorized nature of the sea ice
model clash during DA. In thick ice conditions, each catego-
rized variable exhibits reasonable spread across the ensem-
ble and contains a portion of the total ice area for large parts
of the year. However, aggregate ice coverage in the PACK
ICE regime is always close to one, resulting in quite nar-
row ensemble spread in SIC. The initial adjustments to mod-
eled SIC during assimilation are therefore small, since the
DA filter weights the adjustment process against the observa-
tion when ensemble spread is less than observational uncer-
tainty. However, because the ensemble spread in SIC is very
narrow compared to spread in the model’s categorized state
variables, these small adjustments to SIC can be regressed
into more substantial and significant adjustments to the cate-
gorized variables (i.e., adjustments to Aice,n in PACK ICE).
Since DA treats the categories of the state variables distinctly,
there is no guarantee that each category of a given state vari-
able is adjusted in a coordinated fashion within an ensemble
member; improvements to individual categories could there-
fore combine into non-intuitive changes to aggregate vari-
ables.

In thinner regimes, ensemble spread in aggregate variables
can be more proportional to ensemble spread in categorized
variables. As SIC tends away from total sea ice coverage, the
summation of the individual categories is less likely to al-
ways approach 1, reducing the cancellation of spread. How-
ever, in these regimes, ice is less evenly distributed across
categories. For example, in SEASONAL ICE, most of the
sea ice and snow resides in the thinnest 3 categories, while
most of the FIRST-YEAR ice is contained in the thinnest cat-
egory. Therefore, while assimilating aggregate observations
like SIC does adjust the state in thinner ice cases, the major-
ity of the impact on observable variables is attributable to the
pMAE change in categories which contain the largest frac-
tion of sea ice and snow in that regime.

Assimilating SIC or FBR observations tends to have a lim-
ited or negative impact on snow volume. In all three regimes,

SIT and FBL observations do have a positive impact on at
least some Vsno,n categories (Fig. 13); in the PACK ICE
and SEASONAL ICE cases, however, the positive impact on
snow volume occurs in categories that have less ice overall
in them (the thinnest two ice categories in PACK ICE and
the thickest two ice categories in SEASONAL ICE). This in-
dicates that the positive impact on snow in these categories
is negated by the negative impact on snow in the categories
that make up more of the total snow volume in each regime.
The exception to this pattern is the efficacy of SIC and FBL
observations to improve modeled SND and Vsno,n estimates
in FIRST-YEAR ICE, where ice is dominated by the thinnest
ice category and ensemble spread is large during ice-covered
portions of the year. Due to the large ensemble spread, adjust-
ments are likely to be more accurate in the observable space
and have a more reasonable covariance relationship with the
state variables. Additionally, if the adjustment from an obser-
vation onto snow in the thinnest model category is positive,
the overall adjustment to modeled SND is also likely to be
positive, since the adjustments to the categories with very
little ice or snow will contribute minimally to the overall im-
pact.

4 Discussion and Implications

This study has explored how assimilating plausibly avail-
able sea ice observations can impact the simulated sea ice
state in various sea ice regimes. The single-column model-
ing framework is purposefully simplified, enabling rapid ex-
perimentation but obligating careful interpretation. The ab-
sence of coupling to sea ice dynamics and other components
of the Earth system gives rise to important caveats that might
be expected to lessen the impact of assimilated sea ice ob-
servations in fully coupled, three-dimensional experiments.
The influence of advection and coupled feedback processes,
which tend to reduce the persistence of sea ice anomalies,
would need to be quantified in more comprehensive experi-
ments. Using synthetic, perfect-model observations also re-
duces the demand for uncertainty quantification but sidelines
questions related to observation rejection, representativeness,
and bias. For these reasons, the results of this study should
be considered an upper bound on the efficacy of assimilating
sea ice observations. However, when appropriately contex-
tualized, they offer valuable insights for future attempts to
constrain the modeled sea ice state.

Across the three sea ice regimes, assimilating observa-
tions during the summer and early autumn freeze-up period
demonstrated the greatest ability to reconstruct the true sea
ice state. Of the observation types tested, SIT observations
had the broadest, and often the largest, positive impact. Not
only is MAE for modeled SIT reduced in all regimes, but
assimilating SIT also reduces modeled SIC error in season-
ally ice-covered regimes. This result arrives at a promising
time, as advances in observation processing increasingly en-
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Figure 11. Reduction in pMAE for categorized ice area state variables. Same as Fig. 7 but where pMAE has been calculated for each category
of sea ice area (Aice,n) along the ice thickness distribution over all months of the year.

Figure 12. Reduction in pMAE for categorized ice volume state variables. Same as Fig. 11 but for categorized sea ice volume (Vice,n) along
the ice thickness distribution.

able year-round estimates of SIT from remote sensing ob-
servations (Landy et al., 2022). While real, basin-wide SIT
observations are still relatively limited during the summer
months, these findings should reinforce efforts to improve
SIT observing systems during the summer, particularly pre-
ceding the transition to freezing conditions.

A novel finding of this study is the comparative impact of
FBR and FBL observations, which differ in their impact on
modeled snow depth in thick ice environments. While these
two types of freeboard observations both appear to constrain
thin ice environments very well, it must be noted that for
present-day observing systems, both FBR and FBL observa-
tions are only available in regions that exceed a relatively

high sea ice coverage threshold (Petty et al., 2023; Kurtz
et al., 2014). Thus, FBL observations are likely to have a
more positive overall impact compared to FBR observations,
as FBL may also improve SIC and avoid degrading SND in
thick ice regimes. Additionally, while freeboard observations
of either type display very limited impact in seasonal ice,
SIC observations perform comparably to SIT observations in
this regime. Given their year-round availability and relatively
low observational uncertainty compared to current SIT ob-
servational estimates, assimilating a year-round combination
of FBL and SIC observations is likely to produce the most
accurate sea ice state estimate in current three-dimensional
applications.
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Figure 13. Reduction in pMAE for categorized snow volume state variables. Same as Fig. 11 but for categorized snow volume (Vsno,n) along
the ice thickness distribution.

Figure 14. Model ensemble error covariance relationships across
ice regimes. The ensemble error covariance of SIC (top row), SIT
(middle row), and freeboard (bottom row) with total sea ice volume
as function of time for PACK ICE (red), SEASONAL ICE (blue),
and FIRST-YEAR ICE (black) regimes. The dotted lines in the bot-
tom panel indicate FBL-Vice error covariances, while the solid lines
show the FBR-Vice relationship.

The impact of each observation kind, as well as the ten-
dency for observations to be more effective during summer
months, can largely be explained by the covariance relation-
ships between variables across each of the sea ice ensem-
bles. Figure 14 demonstrates how the model ensemble co-
variance relationship between observation types and total sea
ice volume (Vice) evolves annually across sea ice regimes. In

conditions where the ensemble spread of SIC is very small
(PACK ICE, or SEASONAL ICE in the winter months), the
covariance relationship between SIC and Vice will also be
very small, regardless of the comparatively large ensemble
spread in SIT. The ability of SIC observations to update the
model state is effectively quashed, as any small adjustment
produced by comparing observed and modeled SIC values
will be projected on the sea ice state variables via a very
weak error covariance relationship. By contrast, in summer-
time SEASONAL ICE regimes, or FIRST-YEAR ICE, the
ensemble spread in SIC is still seasonal but sufficient enough
to allow SIC to adjust the model state via non-negligible
summertime error covariances. While the details of these co-
variance relationships are dependent on how the model rep-
resents variability in the sea ice state, their general structure
and seasonal evolution reflect physics that should be consis-
tent across credible sea ice models available today.

Relative magnitude of observational error to model ensem-
ble spread also contributes to the apparent potency of obser-
vation types. For example, SIC observations are particularly
effective in FIRST-YEAR ICE in part because SIC obser-
vational error is prescribed as a parabolic function of SIC
value. In the context of low observational uncertainty in a
low-SIC environment (Fig. 4c), the DA is heavily weighted
toward the observation, because ensemble spread in SIC is
large by comparison. A similar argument helps explain the
switch in relative impact of FBR and FBL observations be-
tween thick and thin ice regimes. The observational errors
assigned to synthetic FBL observations are selected as a pos-
itive linear function of FBL value (see Appendix B; Fig. 4j–
l). In thick ice environments, the ratio of FBL observational
error to ensemble spread in modeled FBL will be lower than
in thin ice environments. By comparison, the errors assigned
to FBR observations are drawn from a fixed range, regardless
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of FBR value (Fig. 4g–i). The ratio of observational error to
ensemble spread shifts in reverse and FBR observations be-
come more effective for constraining modeled SIT in thick
ice environments.

5 Conclusions

In the presented series of perfect-model, single-column sea
ice modeling experiments, the ability of DA to constrain the
sea ice state is found to vary as a function of sea ice obser-
vation type and sea ice regime. SIT and FBL observations
are broadly the most effective across regimes, though SIC
observations perform well in seasonal and very thin sea ice
environments. If assimilated together in more realistic exper-
iments, it is possible that SIC observations may compensate
for the lack of real SIT and FBL observations in marginal ice
conditions. Seasonally, observation impact tends to be larger
in summer, which exhibits more substantial model ensemble
spread across variables. In winter, error metrics for SIT in
a single-column model are sensitive to the timing of freeze-
up in very seasonal ice regimes, but observations otherwise
broadly improve sea ice estimates during this time.

Simulating an ITD within a sea ice model complicates the
assimilation process. Summarily, this work demonstrates that
an improved estimate of an observable aggregate quantity
does not guarantee an accurate adjustment of the underlying
model state, which may influence the model’s subsequent sea
ice forecast. As many sea ice models employ an ITD, the re-
lationship between observations and the model’s categorized
variables should be carefully evaluated.

Rapid hypothesis testing in CICE-SCM-DART enables a
focused analysis of the impacts and performance of DA in a
complex sea ice model. While there are notable caveats, the
ease of simulation and interpretation in this single-column
framework call attention to many intricacies and nuances rel-
evant to the design of optimal sea ice data assimilation ap-
plications. Use of CICE-SCM-DART provides an accessible
and necessary first step when developing and steering efforts
to improve sea ice data assimilation.

Appendix A: Perturbed atmosphere method

Ensemble data assimilation requires an ensemble of model
simulations that can maintain some spread among members,
as a measure of uncertainty in the ensemble mean estimate of
the model state. If ensemble spread collapses relative to the
uncertainty of the observations being used to constrain the
model, then the data assimilation will have no effect on the
model state.

Several approaches to generate ensemble spread have been
applied to sea ice data assimilation problems (Massonnet et
al., 2015; Mu et al., 2018a; Zhang et al., 2018; Williams
et al., 2023; Sievers et al., 2023; Riedel and Anderson,
2024). In this work, a perturbed atmosphere method is used,

as it allows the sea ice model ensemble to develop spread
that is related to variable atmospheric conditions, thus sam-
pling sea ice conditions as a function of climate forcing.
Currently, there exist some large ensemble atmosphere re-
analyses that can provide variable atmospheric conditions
to a sea ice model ensemble (e.g. CAM6-DART; Raeder
et al., 2021) without requiring any kind of manual pertur-
bation, though they are not yet formally supported within
CESM2.3. As such, the model simulations presented in this
thesis are driven by a perturbed version of the single JRA55-
do atmospheric forcing that is already actively supported by
CESM2.3 as a data atmosphere model. The method outlined
here was developed by François Massonnet and his original
scripts are available upon request.

A1 General Approach

As highlighted by Massonnet (personal communication,
François Massonnet, 2023), simple perturbation of the at-
mospheric fields in the forcing set (temperature, specific hu-
midity, zonal and meriodional wind, short- and longwave
flux, and precipitation) by the addition of white noise is un-
tenable, due to the spatiotemporal coherence between these
fields. Optimally, the perturbations produced from the refer-
ence forcing would maintain the statistics of the reference.

To generate sea ice conditions that reflect realistic atmo-
spheric conditions, the desired perturbed atmospheric con-
ditions must differ from one another, but maintain the spa-
tiotemporal coherence between atmospheric variables. To ac-
complish this, the covariance matrix of the atmospheric state,

C=
XXT

(n− 1)
, (A1)

is preserved in the creation of each perturbation set by adding
white noise to the left singular vectors of the singular value
decomposition (SVD) of C. If the SVD is defined as

XXT = U66TUT , (A2)

then a left singular matrix can be expressed as

R=
U61/2

(n− 1)1/2
. (A3)

R can then be perturbed to Y via multiplication with a vector
of random variables with zero mean and identity covariance,

Y= R · z. (A4)

The expectation of Y is shown to be 0,

E(Y)= E(R · z)= R ·E(z)= 0, (A5)

while the covariance matrix of Y is equal to the covariance
matrix of X,

E(YYT )= RzzTRT = RIRT = RRT (A6)

https://doi.org/10.5194/tc-19-6207-2025 The Cryosphere, 19, 6207–6227, 2025



6222 M. M. Wieringa and C. M. Bitz: Regime-dependence when constraining a sea ice model with observations

Figure A1. JRA55-do localized atmospheric forcings. The perturbed atmospheric forcings in 2011 extracted from the JRA55-do reanalysis
for ice-ocean models are shown for key variables. The 30-member perturbed ensemble mean for 10 m surface temperature (top); downwelling
shortwave flux (second from top); downwelling longwave flux (second from bottom); and 10 m specific humidity (bottom) are plotted for
each of three locations in the Arctic Basin. The PACK ICE location (88° N, 0° E) is shown in purple, SEASONAL ICE (74.53° N, 174.45° E)
in blue, and FIRST-YEAR ICE (75° N, 40° E) in teal. The grey shading in each panel represents the melt season, during which the PACK
ICE location is consistently experiencing above-freezing temperatures.

RRT =
U66TUT

(n− 1)
=

XXT

(n− 1)
= C. (A7)

In this framework, any number of arbitrary versions of z can
be used to produce an equivalent number of perturbed at-
mospheric states, Y, that have statistics consistent with the
original reference X.

To implement the general approach, additional data prepa-
ration and considerations for computational cost are neces-
sary. These are outlined in the next section.

A2 Application

To obtain the perturbed versions of the JRA55-do surface
variables produced by Tsujino et al. (2018), the general ap-
proach is divided into three processes: (1) preprocessing, (2)
perturbation calculation, and (3) postprocessing.

In Step 1, daily means of the atmospheric fields are av-
eraged from their native timestep (in the case of JRA55-do,

3-hourly). Leap days are removed, should they exist, and the
year-to-year differences in each variable at each location in
the dataset are calculated. In step 2, the data will be cen-
tered by removing the mean values of a reference period,
so the range of data for which year-to-year differences need
to be calculated must also include the full reference period
(i.e. to obtain perturbations for 1980–1990 based on anoma-
lies from reference period 1975–1985, preprocessing must
include years 1975–1990).

Step 2 defines the perturbations using the preprocessed
data defined in Step 1. First, for each variable of interest in
the forcing dataset, the data for each timestep in the refer-
ence period is reshaped into a vector and stored in a refer-
ence period matrix (X′), from which a mean state vector is
calculated. The anomalies for the reference period are then
determined by removing the mean state vector (X) from the
reference period matrix. The anomalies can be shown to be
equivalent to a reduced version of R, given that X represents
state anomalies,

X= X′−X (A8)
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The covariance matrix of X can be expressed as an SVD,

XXT =
U66TUT

(n− 1)
, (A9)

meaning that X, the state anomalies matrix, can also be de-
fined as

X=
U6

(n− 1)1/2
, (A10)

which is equivalent to the definition of R introduced in the
general application. Recognizing that for an n×m anomaly
matrix X defined by n timesteps there are only n nonzero
entries in 6, R can more practically taken as the product of
the n left singular vectors (Un) and a reduced n× n version
of the eigenvalue matrix (S),

R=
UnS1/2

(n− 1)1/2
. (A11)

This reduces the overall computational load by removing the
need to actually calculate the SVD of the covariance matrix.
Instead, the desired number of perturbations (p) for each year
of the chosen forcing period can be straightforwardly pro-
duced by multiplying the reference period anomalies of each
variable by a set of p random vectors, z.

Finally, in Step 3, once the perturbations have been cal-
culated, they are interpolated back to the reference dataset’s
native timestep (3-hourly) and added to the original forcing
values to produce p versions of perturbed atmospheric con-
ditions. For additional flexibility, a multiplicative factor α is
used to control the amount of perturbation added to the orig-
inal forcing. If the desired perturbation is less than might
be observed due to interannual variability, α < 1; if the de-
sired perturbation should exceed interannual natural variabil-
ity, α > 1. To generate ensemble spread that reflects year-to-
year variations in daily sea ice estimates, the perturbations
are applied using α = 1.

Appendix B: Perfect-model observation error
derivations

In this work, a series of perfect-model Observing Sys-
tem Simulation Experiments (OSSEs) are formulated using
CICE-SCM-DART and synthetically-derived observations.
The use of such synthetic observations to explore various as-
pects of a data assimilation system or a specific type of ob-
serving network is common; in fact, DART provides ready-
made programs to calculate synthetic observations from a
randomly selected member of the ensemble forecast system.
A DART user points such a program toward the randomly
selected ensemble member and provides the location and an
estimate of the error variance associated with each desired
observation.

Sea ice observational products tend to vary widely in terms
of the level of detail provided regarding observational er-
ror. For some products, observational error is given as a sin-
gle value that approximates bias and precision (Zhang et
al., 2018), while for others, each observation is associated
with an instrument and algorithm error estimate (Kwok et
al., 2023; Petty et al., 2023). It may also be the case that the
OSSE experiment is being used to explore observation kinds
that are not yet observed in the real-world, and for which
observational error variance is a completely open question.
When prescribing observational error variance in the course
of producing synthetic observations in CICE-SCM-DART,
there is therefore a wide range of approaches that could be
taken for any given sea ice observation kind.

In this work, it is assumed that observational error varies in
each kind of sea ice observation as a function of the the value
of the observation itself. This can be the case for SIT and
freeboard measurements, as error estimates associated with
SIT and FBL observations from ICESat-2 can be generally
noted to increase with ice thickness (Petty et al., 2023, Fig.
B1). Based on a sampling of estimated linear relationships
between ICESat-2 along-track FBL measurements and their
associated uncertainty estimates, synthetic FBL error vari-
ance is assumed to be a quasi-randomized linear function of
FBL (see Table 2). Uncertainties associated with ICESat-2
SIT estimates are much less linear, due to density assump-
tions and snow estimates used in the derivation of SIT from
ICESat-2 FBL estimates. However, given the early stage
of and somewhat arbitrary decisions involved in estimates
ICESat-2 SIT, synthetic SIT error variance in this work is
also assumed to be a linear function of SIT value (Table 2).
The choice of scaling accounts for the general observation
that FBL estimates tend to be ∼ 1/10th of associated SIT
(Alexandrov et al., 2010; Sievers et al., 2023).

Radar freeboard error estimates are based on boreal win-
tertime measurements collected by the CryoSat-2 satellite
(Fig. B1). The errors associated with CryoSat-2 freeboards
fall between a minimum of 0.1 and 0.15 m, regardless of the
observed value or the time of year. To contextualize the re-
sults of this study in terms of realistic measurement systems,
the FBR uncertainties prescibed here are randomly drawn
from the range [0.1, 0.15] (Table 2).

Finally, for SIC observations, it is assumed that observa-
tion uncertainty is low when sea ice concentrations are very
low or very close to total sea ice coverage (e.g. it is very ob-
vious that there is or isn’t ice covering the grid cell), but that
the uncertainty increases for SIC values that represent more
mixed divisions between ice cover and open water. To ap-
proximate this assumption, SIC observation error variance is
taken to be an inverse parabolic function of the value of SIC
itself, where error variance is near zero for SIC values at 0 or
1 and maximized for SIC near 0.5 (Table 2). The function has
been scaled such that the annual mean SIC error variance is
near 15 %, as has been used in previous OSSE studies (Zhang
et al., 2018; Riedel and Anderson, 2024).
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Figure B1. Freeboard error estimates based on observed freeboard value. The basis of prescribed observational error estimates for FBR
and FBL observation types are illustrated using ICESat-2 observations (left; FBL observation type) and CryoSat-2 observations (right; FBR
observation type). The real observation uncertainties provided by each satellite mission are plotted as a function of observation value for all
measurements taken in 2011 (CryoSat-2) or 2019 (ICESat-2). Colors indicate the time of year each observation was taken. The red lines
indicate the minimum and maximum uncertainties in the Cryosat-2 record and the dashed black line indicates the approximation used to
determine the mean uncertainty for each observation value. The gray shading indicates the 1σ threshold random sampling of uncertainites
around the mean value.
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