Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-5983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-5983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal and vertical changes in snow microbial communities during the melting season below canopy in Northern Japan
Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
Kino Kobayashi
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522, Japan
Daiki Seto
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522, Japan
Fuki Konishi
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522, Japan
Kaito Wada
Department of Earth Sciences, Chiba University, Chiba, 263–8522, Japan
Suzunosuke Usuba
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522, Japan
Nozomu Takeuchi
Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, 263–8522, Japan
Related authors
Masato Ono and Nozomu Takeuchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1193, https://doi.org/10.5194/egusphere-2024-1193, 2024
Preprint archived
Short summary
Short summary
Despite the daily changes in solar radiation and temperature, there is limited understanding of diel vertical distribution in microbial communities within snow and ice environments. Through twenty-four hours of snow sampling and monitoring, our study revealed that motile microbes within the snowpack vertically migrate, seemingly to escape from intense daytime solar radiation.
Masato Ono and Nozomu Takeuchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1193, https://doi.org/10.5194/egusphere-2024-1193, 2024
Preprint archived
Short summary
Short summary
Despite the daily changes in solar radiation and temperature, there is limited understanding of diel vertical distribution in microbial communities within snow and ice environments. Through twenty-four hours of snow sampling and monitoring, our study revealed that motile microbes within the snowpack vertically migrate, seemingly to escape from intense daytime solar radiation.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Cited articles
Almela, P., Elser, J. J., Giersch, J. J., Hotaling, S., Rebbeck, V., and Hamilton, T. L.: Laboratory Experiments Suggest a Limited Impact of Increased Nitrogen Deposition on Snow Algae Blooms, Environ. Microbiol. Rep., 16, e70052, https://doi.org/10.1111/1758-2229.70052, 2024.
Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M., Barbante, C., Boutron, C., and Ferrari, C.: Bacterial characterization of the snow cover at Spitzberg, Svalbard: Bacterial characterization of an Arctic snow cover, FEMS Microbiology Ecology, 59, 255–264, https://doi.org/10.1111/j.1574-6941.2006.00198.x, 2007.
Amoroso, A., Domine, F., Esposito, G., Morin, S., Savarino, J., Nardino, M., Montagnoli, M., Bonneville, J.-M., Clement, J.-C., Ianniello, A., and Beine, H. J.: Microorganisms in Dry Polar Snow Are Involved in the Exchanges of Reactive Nitrogen Species with the Atmosphere, Environ. Sci. Technol., 44, 714–719, https://doi.org/10.1021/es9027309, 2010.
Aubry-Wake, C., Bertoncini, A., and Pomeroy, J. W.: Fire and Ice: The Impact of Wildfire-Affected Albedo and Irradiance on Glacier Melt, Earth's Future, 10, e2022EF002685, https://doi.org/10.1029/2022EF002685, 2022.
Broadwell, E. L. M., Pickford, R. E., Perkins, R. G., Sgouridis, F., and Williamson, C. J.: Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains, FEMS Microbiology Ecology, 99, fiad088, https://doi.org/10.1093/femsec/fiad088, 2023.
Brown, R., Schuler, Vikhamar, Dagrun, Bulygina, O., Derksen, C., Luijus, K., Mudryk, L., Wang, L., and Yang, D.: Chapter 3. Arctic terrestrial snow cover, in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme, Oslo, Norway, ISBN 978-82-7971-101-8, 2017.
Chen, X., Wei, W., and Liu, M.: Characteristics of temperature variation in seasonal snow in the Western Tianshan Mountains, China, Meteorological Applications, 20, 457–465, https://doi.org/10.1002/met.1308, 2013.
Conway, H., Gades, A., and Raymond, C. F.: Albedo of dirty snow during conditions of melt, Water Resources Research, 32, 1713–1718, https://doi.org/10.1029/96WR00712, 1996.
Costa, D., Pomeroy, J., and Wheater, H.: A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model, Advances in Water Resources, 122, 37–48, https://doi.org/10.1016/j.advwatres.2018.09.008, 2018.
Costa, D., Baulch, H., Elliott, J., Pomeroy, J., and Wheater, H.: Modelling nutrient dynamics in cold agricultural catchments: A review, Environmental Modelling & Software, 124, 104586, https://doi.org/10.1016/j.envsoft.2019.104586, 2020.
Cruaud, P., Vigneron, A., Fradette, M., Dorea, C. C., Culley, A. I., Rodriguez, M. J., and Charette, S. J.: Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions, Limnology & Oceanography, 65, https://doi.org/10.1002/lno.11130, 2020.
Čufar, K., De Luis, M., Saz, M. A., Črepinšek, Z., and Kajfež-Bogataj, L.: Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation, Trees, 26, 1091–1100, https://doi.org/10.1007/s00468-012-0686-7, 2012.
Curl, H., Hardy, J. T., and Ellermeier, R.: Spectral Absorption of Solar Radiation in Alpine Snowfields, Ecology, 53, 1189–1194, https://doi.org/10.2307/1935433, 1972.
Degma, P.: Field and Laboratory Methods, in: Water Bears: The Biology of Tardigrades, vol. 2, edited by: Schill, R. O., Springer International Publishing, Cham, 349–369, https://doi.org/10.1007/978-3-319-95702-9_14, 2018.
Détain, A., Suzuki, H., Wijffels, R. H., Leborgne-Castel, N., and Hulatt, C. J.: Snow algae exhibit diverse motile behaviors and thermal responses, mBio, 16, e02954-24, https://doi.org/10.1128/mbio.02954-24, 2025.
Domine, F.: Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry?, Microorganisms, 7, 260, https://doi.org/10.3390/microorganisms7080260, 2019.
Ezzedine, J. A., Uwizeye, C., Si Larbi, G., Villain, G., Louwagie, M., Schilling, M., Hagenmuller, P., Gallet, B., Stewart, A., Petroutsos, D., Devime, F., Salze, P., Liger, L., Jouhet, J., Dumont, M., Ravanel, S., Amato, A., Valay, J.-G., Jouneau, P.-H., Falconet, D., and Maréchal, E.: Adaptive traits of cysts of the snow alga Sanguina nivaloides unveiled by 3D subcellular imaging, Nat. Commun., 14, 7500, https://doi.org/10.1038/s41467-023-43030-7, 2023.
Felip, M., Sattler, B., Psenner, R., and Catalan, J.: Highly active microbial communities in the ice and snow cover of high mountain lakes, Appl. Environ. Microbiol., 61, 2394–2401, https://doi.org/10.1128/aem.61.6.2394-2401.1995, 1995.
Fukushima, H.: Studies on Cryophytes in Japan, Yokohama Municipal University, 43, 1–146, 1963.
Fukuzaki, N., Oshio, T., Noguchi, I., Matsumoto, M., Morisaki, S., Oohara, M., Tamaki, M., and Hiraki, T.: Spatial differences of chemical features of atmospheric deposition between rainy season and winter in the areas facing to the Japan sea, Japan, Chemosphere, 38, 411–423, https://doi.org/10.1016/S0045-6535(98)00189-1, 1999.
Gabriel, W. N., McNuff, R., Patel, S. K., Gregory, T. R., Jeck, W. R., Jones, C. D., and Goldstein, B.: The tardigrade Hypsibius dujardini, a new model for studying the evolution of development, Developmental Biology, 312, 545–559, https://doi.org/10.1016/j.ydbio.2007.09.055, 2007.
Goodfellow, S. and Barkham, J. P.: Spectral transmission curves for a beech (Fagus Sylvatica L.) CANOPY, Acta Botanica Neerlandica, 23, 225–230, https://doi.org/10.1111/j.1438-8677.1974.tb00940.x, 1974.
Grinde, B.: Vertical distribution of the snow alga Chlamydomonas nivalis (Chlorophyta, Volvocales), Polar Biol., 2, 159–162, https://doi.org/10.1007/BF00448965, 1983.
Hanzelová, M., Vido, J., Škvarenina, J., Nalevanková, P., and Perháčová, Z.: Microorganisms in summer snow patches in selected high mountain ranges of Slovakia, Biologia, 73, 1177–1186, https://doi.org/10.2478/s11756-018-0136-0, 2018.
Hao, C., Chen, T.-W., Wu, Y., Chang, L., and Wu, D.: Snow microhabitats provide food resources for winter-active Collembola, Soil Biology and Biochemistry, 143, 107731, https://doi.org/10.1016/j.soilbio.2020.107731, 2020.
Hirashima, H., Yamaguchi, S., Kosugi, K., Nemoto, M., Aoki, T., and Matoba, S.: Validation of the SNOWPACK model using snow pit observation data, Journal of the Japanese Society of Snow and Ice, 77, 5–16, https://doi.org/10.5331/seppyo.77.1_5, 2015.
Hoham, R. W.: Optimum Temperatures and Temperature Ranges for Growth of Snow Algae, Arctic and Alpine Research, 7, 13, https://doi.org/10.2307/1550094, 1975a.
Hoham, R. W.: The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales), Phycologia, 14, 213–226, https://doi.org/10.2216/i0031-8884-14-4-213.1, 1975b.
Hoham, R. W.: The Effect of Coniferous Litter and Different Snow Meltwaters upon the Growth of Two Species of Snow Algae in Axenic Culture, Arctic and Alpine Research, 8, 377, https://doi.org/10.2307/1550440, 1976.
Hoham, R. W. and Duval, B.: Microbial ecology of snow and freshwater ice Snow Ecology, Cambridge: Cambridge University Press, ISBN 978-0521584838, 2001.
Hoham, R. W. and Remias, D.: Snow and Glacial Algae: A Review, J. Phycol., 56, 264–282, https://doi.org/10.1111/jpy.12952, 2020.
Hoham, R. W., Laursen, A. E., Clive, S. O., and Duval, B.: Snow algae and other microbes in several alpine areas in New England, 50th Eastern Snow Conf., 165–173, 1993.
Hoham, R. W., Mc Cay, T. S., Poirier, M., and Brazda Bell, T.: Balsam fir leaf litter extract stimulates growth of the green snow alga Chloromonas rosae var. psychrophila (Chlorophyta, Volvocales) from Whiteface Mountain, New York, nova_hedwigia, 86, 133–140, https://doi.org/10.1127/0029-5035/2008/0086-0133, 2008.
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., and Strickland, J. D. H.: Fluorometric determination of chlorophyll, ICES J. Mar. Sci., 30, 3–15, 1965.
Irwin, N. A. T., Twynstra, C. S., Mathur, V., and Keeling, P. J.: The molecular phylogeny of Chionaster nivalis reveals a novel order of psychrophilic and globally distributed Tremellomycetes (Fungi, Basidiomycota), PLoS ONE, 16, e0247594, https://doi.org/10.1371/journal.pone.0247594, 2021.
Jones, H. G.: Snow chemistry and biological activity: a particular perspective on nutrient cycling, in: Seasonal Snowpacks, edited by: Davies, T. D., Tranter, M., and Jones, H. G., Springer Berlin Heidelberg, Berlin, Heidelberg, 173–228, https://doi.org/10.1007/978-3-642-75112-7_8, 1991.
Jones, H. G.: The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold, Hydrol. Process., 13, 2135–2147, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15%3C2135::AID-HYP862%3E3.0.CO;2-Y, 1999.
Kariya, Y.: Geomorphic processes at a snowpatch hollow on Gassan volcano, northern Japan, Permafrost Periglac. Process., 13, 107–116, https://doi.org/10.1002/ppp.412, 2002.
Kariya, Y.: Holocene landscape evolution of a nivation hollow on Gassan volcano, northern Japan, CATENA, 62, 57–76, https://doi.org/10.1016/j.catena.2005.02.004, 2005.
Kawase, H., Yamazaki, T., Sugimoto, S., Sasai, T., Ito, R., Hamada, T., Kuribayashi, M., Fujita, M., Murata, A., Nosaka, M., and Sasaki, H.: Changes in extremely heavy and light snow-cover winters due to global warming over high mountainous areas in central Japan, Prog. Earth Planet. Sci., 7, 10, https://doi.org/10.1186/s40645-020-0322-x, 2020.
Kawase, H., Fukui, S., Nosaka, M., Watanabe, S. I., Otomo, K., Murata, A., Murazaki, K., and Nakaegawa, T.: Historical regional climate changes in Japan in winter as assessed by a 5-km regional climate model with a land surface process, Prog. Earth Planet. Sci., 10, 7, https://doi.org/10.1186/s40645-023-00536-4, 2023.
Kawecka, B.: Ecology of snow algae, Polish Polar Research, 7, 407–415, 1986.
Larose, C., Dommergue, A., and Vogel, T.: The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity, Biology, 2, 317–330, https://doi.org/10.3390/biology2010317, 2013.
Matsui, T., Yagihashi, T., Nakaya, T., Tanaka, N., and Taoda, H.: Climatic controls on distribution of Fagus crenata forests in Japan, Journal of Vegetation Science, 15, 57–66, https://doi.org/10.1111/j.1654-1103.2004.tb02237.x, 2004.
Matsumoto, M., Hanneman, C., Camara, A. G., Krueger-Hadfield, S. A., Hamilton, T. L., and Kodner, R. B.: Hypothesized life cycle of the snow algae Chlainomonas sp. (Chlamydomonadales, Chlorophyta) from the Cascade Mountains, USA, Journal of Phycology, 60, 724–740, https://doi.org/10.1111/jpy.13454, 2024.
Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y., and Kawachi, M.: Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov., PLoS ONE, 14, e0210986, https://doi.org/10.1371/journal.pone.0210986, 2019.
Matsuzaki, R., Takashima, Y., Suzuki, I., Kawachi, M., Nozaki, H., Nohara, S., and Degawa, Y.: The Enigmatic Snow Microorganism, Chionaster nivalis, Is Closely Related to Bartheletia paradoxa (Agaricomycotina, Basidiomycota), Microb. Environ., 36, https://doi.org/10.1264/jsme2.ME21011, 2021.
Matsuzaki, R., Nohara, S., Suzuki, I., and Kawachi, M.: Snow algae in Oze, Low Temperature Science, 80, 155–162, 2022.
Muramoto, K., Kato, S., Shitara, T., Hara, Y., and Nozaki, H.: Morphological and Genetic Variation in the Cosmopolitan Snow Alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese Mountainous Area, Cytologia, 73, 91–96, https://doi.org/10.1508/cytologia.73.91, 2008.
Muramoto, K., Nakada, T., Shitara, T., Hara, Y., and Nozaki, H.: Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al. , comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material, European Journal of Phycology, 45, 27–37, https://doi.org/10.1080/09670260903272607, 2010.
Nakanishi, H., Seto, K., Takeuchi, N., and Kagami, M.: Novel parasitic chytrids infecting snow algae in an alpine snow ecosystem in Japan, Front. Microbiol., 14, 1201230, https://doi.org/10.3389/fmicb.2023.1201230, 2023.
Negoro, H.: Seasonal Occurrence of the Apterous Wintr Stoneflis in the Mountaine and the High Mountaine Areas of Toyama Prefecture in Japan, Bulletin of the Toyama Science Museum, 32, 61–69, 2009.
Ohte, N., Sebestyen, S. D., Shanley, J. B., Doctor, D. H., Kendall, C., Wankel, S. D., and Boyer, E. W.: Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique, Geophysical Research Letters, 31, 2004GL020908, https://doi.org/10.1029/2004GL020908, 2004.
Ono, M. and Takeuchi, N.: The diel vertical migration of microbes within snowpacks driven by solar radiation and nutrients, Arctic, Antarctic, and Alpine Research, 57, 2460253, https://doi.org/10.1080/15230430.2025.2460253, 2025.
Ono, M., Takeuchi, N., and Zawierucha, K.: Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan, Sci. Rep., 11, 5973, https://doi.org/10.1038/s41598-021-85462-5, 2021.
Ono, M., Takeuchi, N., and Zawierucha, K.: Description of a new species of Tardigrada Hypsibius nivalis sp. nov. and new phylogenetic line in Hypsibiidae from snow ecosystem in Japan, Sci. Rep., 12, 14995, https://doi.org/10.1038/s41598-022-19183-8, 2022.
Onuma, Y., Takeuchi, N., and Takeuchi, Y.: Temporal changes in snow algal abundance on surface snow in Tohkamachi, Japan, Bulletin of Glacier Research, 34, 21–31, https://doi.org/10.5331/bgr.16A02, 2016.
Osaka, K., Kugo, T., Komaki, N., Nakamura, T., Nishida, K., and Nagafuchi, O.: Atmospheric nitrate leached from small forested watersheds during rainfall events: Processes and quantitative evaluation, J. Geophys. Res.-Biogeo., 121, 2030–2048, https://doi.org/10.1002/2015JG003210, 2016.
Prochazkova, L., Remias, D., Rezanka, T., and Nedbalova, L.: Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia), Fottea, 18, 1–18, https://doi.org/10.5507/fot.2017.010, 2018.
Procházková, L., Remias, D., Řezanka, T., and Nedbalová, L.: Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions, Microorganisms, 7, 434, https://doi.org/10.3390/microorganisms7100434, 2019a.
Procházková, L., Leya, T., Křížková, H., and Nedbalová, L.: Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow, FEMS Microbiology Ecology, 95, fiz064, https://doi.org/10.1093/femsec/fiz064, 2019b.
Procházková, L., Remias, D., Holzinger, A., Řezanka, T., and Nedbalová, L.: Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta), Polar Biol., 44, 105–117, https://doi.org/10.1007/s00300-020-02778-0, 2021.
Procházková, L., Matsuzaki, R., Řezanka, T., Nedbalová, L., and Remias, D.: The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance, Journal of Phycology, 59, 236–248, https://doi.org/10.1111/jpy.13307, 2023.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 21 April 2024), 2024.
Raymond, B. B., Engstrom, C. B., and Quarmby, L. M.: The underlying green biciliate morphology of the orange snow alga Sanguina aurantia, Current Biology, 32, R68–R69, https://doi.org/10.1016/j.cub.2021.12.005, 2022.
Rea, M. E. and Dial, R. J.: An experimental assessment of active and passive dispersal of red snow algae on the Harding Icefield, southcentral Alaska, Arctic, Antarctic, and Alpine Research, 56, 2370905, https://doi.org/10.1080/15230430.2024.2370905, 2024.
Remias, D., Lütz-Meindl, U., and Lütz, C.: Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis, European Journal of Phycology, 40, 259–268, https://doi.org/10.1080/09670260500202148, 2005.
Remias, D., Wastian, H., Lütz, C., and Leya, T.: Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica, Antarctic Science, 25, 648–656, https://doi.org/10.1017/S0954102013000060, 2013.
Segawa, T., Miyamoto, K., Ushida, K., Agata, K., Okada, N., and Kohshima, S.: Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR, Appl. Environ. Microbiol., 71, 123–130, https://doi.org/10.1128/AEM.71.1.123-130.2005, 2005.
Shinomiya, Y., Yamada, T., Hirai, K., Ono, K., Noguchi, S., Kubota, T., and Abe, T.: Monitoring the chemistry of rainwater and streamwater from a small forested watershed: Results in the Kamabuchi experimental watershed, Yamagata prefecture, Tohoku district, Japan between 2000 and 2014, Bulletin of FFPRI, 17, 273–300, https://doi.org/10.20756/ffpri.17.3_273, 2018.
Shoji, S. and Yoshimura, K.: Suppressed water availability in winter buds delays the bud burst of broad-leaved trees in a heavy snow forest, Tree Physiology, 45, tpaf048, https://doi.org/10.1093/treephys/tpaf048, 2025.
Suzuki, K. and Watanabe, Y.: Chemical changes of snowpack by microbiological activity and incubation experiment of Scenedesmus acuminatus, Journal of the Japanese Society of Snow and Ice, 62, 235–244, https://doi.org/10.5331/seppyo.62.235, 2000.
Suzuki, T. and Takeuchi, N.: Influence of vegetation on occurrence and color of snow algal blooms in Mt. Gassan, Yamagata Prefecture, Japan, Arctic, Antarctic, and Alpine Research, 55, 2173138, https://doi.org/10.1080/15230430.2023.2173138, 2023.
Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y., and Kudoh, S.: Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the Snow Surface, PLoS ONE, 6, e14690, https://doi.org/10.1371/journal.pone.0014690, 2011.
Urban, G., Richterová, D., Kliegrová, S., and Zusková, I.: Reasons for shortening snow cover duration in the Western Sudetes in light of global climate change, Int. J. Climatol., 43, 5485–5511, https://doi.org/10.1002/joc.8157, 2023.
Vitasse, Y., Delzon, S., Dufrêne, E., Pontailler, J.-Y., Louvet, J.-M., Kremer, A., and Michalet, R.: Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses?, Agricultural and Forest Meteorology, 149, 735–744, https://doi.org/10.1016/j.agrformet.2008.10.019, 2009.
Wakazuki, Y., Hara, M., Fujita, M., Suzuki, C., Ma, X., and Kimura, F.: Effect of climate change on the snow disappearance date in mountainous areas of central Japan, Hydrological Research Letters, 9, 20–26, https://doi.org/10.3178/hrl.9.20, 2015.
Yakimovich, K. M., Engstrom, C. B., and Quarmby, L. M.: Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia, Front. Microbiol., 11, 1721, https://doi.org/10.3389/fmicb.2020.01721, 2020.
Zawierucha, K., Vecchi, M., Takeuchi, N., Ono, M., and Calhim, S.: Negative impact of freeze–thaw cycles on the survival of tardigrades, Ecological Indicators, 154, 110460, https://doi.org/10.1016/j.ecolind.2023.110460, 2023.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Reviews of Geophysics, 43, 2004RG000157, https://doi.org/10.1029/2004RG000157, 2005.
Short summary
We described the temporal and vertical changes in biological communities, including snow algae, microinvertebrates, and snow fungi, within snowpacks in Northern Japan. Temporal changes in microbial activity, showing clear shifts across three defined periods of the melting season, were regulated by snow depth, temperature increase, and the phenology of trees above the snow surface, highlighting the complex interplay between physical and biological factors in shaping snow ecosystems.
We described the temporal and vertical changes in biological communities, including snow algae,...