Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-5003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-5003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid regional assessment of rock glacier activity based on DInSAR wrapped-phase signal
Federico Agliardi
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
Chiara Crippa
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
Institute of Earth Observation, EURAC Research, Bolzano, 39100, Italy
Daniele Codara
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
Federico Franzosi
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
Related authors
Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1398, https://doi.org/10.5194/egusphere-2025-1398, 2025
Short summary
Short summary
Traditional methods for investigating the subsurface cannot properly investigate fractures between 1m and 100–200m. Digital outcrop models (DOMs) provide a framework for the collection of extensive datasets in outcrop analogues. Here we present a comprehensive workflow, with a solid statistical foundation, for the characterization of all the fracture network parameters that can be obtained from this type of support, including best practices for an optimal outcrop selection and data acquisition.
Chiara Crippa, Stefan Steger, Giovanni Cuozzo, Francesca Bearzot, Volkmar Mair, and Claudia Notarnicola
The Cryosphere, 19, 3493–3515, https://doi.org/10.5194/tc-19-3493-2025, https://doi.org/10.5194/tc-19-3493-2025, 2025
Short summary
Short summary
Our study, focused on South Tyrol (NE Italy), develops an updated and comprehensive activity classification system for all rock glaciers in the current regional inventory. Using multisource products, we integrate climatic, morphological, and differential interferometric synthetic aperture radar (DInSAR) data in replicable routines and multivariate statistical methods, producing a comprehensive classification based on the updated Rock Glacier Inventories and Kinematic (RGIK) 2023 guidelines. Results leave only 3.5 % of the features non-classified, as opposed to 13–18.5 % in previous studies.
Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1398, https://doi.org/10.5194/egusphere-2025-1398, 2025
Short summary
Short summary
Traditional methods for investigating the subsurface cannot properly investigate fractures between 1m and 100–200m. Digital outcrop models (DOMs) provide a framework for the collection of extensive datasets in outcrop analogues. Here we present a comprehensive workflow, with a solid statistical foundation, for the characterization of all the fracture network parameters that can be obtained from this type of support, including best practices for an optimal outcrop selection and data acquisition.
Cited articles
Alcott, A.: Classification of Rock Glaciers in Southern Colorado Based on Ice Content Using Radar Interferometry and Thermal Remote Sensing, Doctoral dissertation, University of Missouri-Columbia, ProQuest Dissertations & Theses, 2020. 27993233, 2020.
Amschwand, D., Tschan, S., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., Aschwanden, L., and Gubler, H.: Seasonal ice storage changes and meltwater generation at Murtèl rock glacier (Engadine, eastern Swiss Alps): estimates from measurements and energy budgets in the coarse blocky active layer, Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, 2025.
Ballabio, D.: A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure, Chemom. Intell. Lab. Syst., 149, 1–9, https://doi.org/10.1016/j.chemolab.2015.10.003, 2015.
Barsch, D.: Rockglaciers, Series, Springer Series in Physical Environment, ISBN 978-3-642-80095-5, 1996.
Bartsch, A., Strozzi, T., and Nitze, I.: Permafrost monitoring from space, Surveys in Geophysics, 44, 1579–1613, 2023.
Barboux, C., Delaloye, R., and Lambiel, C.: Inventorying slope movements in an Alpine environment using DInSAR, Earth Surf. Proc. Landforms, 39, 2087–2099, https://doi.org/10.1002/esp.3603, 2014.
Bearzot, F., Garzonio, R., Di Mauro, B., Colombo, R., Cremonese, E., Crosta, G. B., Delaloye, R., Hauck, C., Morra Di Cella, U., Pogliotti, P., Frattini, P., and Rossini, M.: Kinematics of an Alpine rock glacier from multi-temporal UAV surveys and GNSS data, Geomorphology, 402, https://doi.org/10.1016/j.geomorph.2022.108116, 2022.
Beniston, M., Haeberli, W., Hoelzle, M., and Taylor, A.: On the potential use of glacier and permafrost observations for verification of climate models, Annals of Glaciology, 25, 400–406, https://doi.org/10.3189/S026030550001435X, 2017.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Berger, J., Krainer, K., and Mostler, W.: Dynamics of an active rock glacier (Ötztal Alps, Austria), Quaternary Res., 62, 233–242, https://doi.org/10.1016/j.yqres.2004.07.002, 2004.
Bertone, A., Barboux, C., Bodin, X., Bolch, T., Brardinoni, F., Caduff, R., Christiansen, H. H., Darrow, M. M., Delaloye, R., Etzelmüller, B., Humlum, O., Lambiel, C., Lilleøren, K. S., Mair, V., Pellegrinon, G., Rouyet, L., Ruiz, L., and Strozzi, T.: Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide, The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, 2022.
Bertone, A., Seppi, R., Callegari, M., Cuozzo, G., Dematteis, N., Krainer, K., Carlo Marin, Notarnicola, C., and Zucca, F.: Unprecedented observation of hourly rock glacier velocity with ground-based SAR. Geophys. Res. Lett., 50, e2023GL102796, https://doi.org/10.1029/2023GL102796, 2023.
Bini, A., Buoncristiani, J. F., Couterrand, S., Ellwanger, D., Felber, M., Florineth, D., Graf, H. R., Keller, O., Kelly, M., Schlüchter, C., and Schöneich, P.: Die Schweiz während des letzteiszeitlichen Maximums (LGM), Karte 1 : 500 000, Bundesamt für Landesgeologie [Map], https://www.swisstopo.admin.ch/de/geokarten-500-pixel (last access: 21 October 2025), 2009.
Bodin, X., Krysiecky, J. M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the Bérard rock glacier (Southern French Alps), Permafr. Periglac. Process., 28, 209–223, https://doi.org/10.1002/ppp.1887, 2016.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012.
Brencher, G., Handwerger, A. L., and Munroe, J. S.: InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA, The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, 2021.
Buchelt, S., Blöthe, J. H., Kuenzer, C., Schmitt, A., Ullmann, T., Philipp, M., and Kneisel, C.: Deciphering Small-Scale Seasonal Surface Dynamics of Rock Glaciers in the Central European Alps Using DInSAR Time Series, Rem. Sens., 15, 2982, https://doi.org/10.3390/rs15122982, 2023.
Casale, F. and Bocchiola, D.: Climate Change Effects upon Pasture in the Alps: The Case of Valtellina Valley, Italy, Climate, 10, 173, https://doi.org/10.3390/cli10110173, 2022.
Ceriani, M. and Carelli, M.: Carta delle precipitazioni medie, minime e massime annue del territorio alpino lombardo (registrate nel periodo 1891–1990), Scala 1 : 250.000. Regione Lombardia, Direzione Generale Territorio ed Urbanistica, U.O. Difesa del Suolo, Struttura Rischi Idrogeologici e Sismici, https://doi.org/10.3189/S026030550001435X, 2000.
Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U., and Vieli, A.: A general theory of rock glacier creep based on in-situ and remote sensing observations, Permafr. Periglac. Process., 32, 139-153, doi.org/10.1002/ppp.2090, 2021.
Colesanti, C. and Wasowski, J.: Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry, Eng. Geol., 88, 173–199, https://doi.org/10.1016/j.enggeo.2006.09.013, 2006.
Costantini, M.: A novel phase unwrapping method based on network programming, IEEE Trans. Geosci. Rem. Sens., 36, 813–821, https://doi.org/10.1109/36.673674, 1998.
Crippa, C., Valbuzzi, E., Frattini, P., Crosta, G. B., Spreafico, M. C., and Agliardi, F.: Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data, Landslides, 18, 2445–2463, 2021.
Delaloye, R. and Staub, B.: Seasonal variations of rock glacier creep: Time series observations from the Western Swiss Alps, in: Proceedings of the International Conference on Book of Abstracts, 20–24 June 2016, Potsdam, Germany, https://doi.org/10.2312/GFZ.LIS.2016.001, 2016.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino, M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., and Schoeneich, P.: Ice loss and slope stability in high-mountain regions. In Snow and ice-related hazards, risks, and disasters, 521–561, Academic Press, https://doi.org/10.1016/B978-0-12-394849-6.00015-9, 2015.
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., and Trigo, I. F.: Google earth engine open-source code for land surface temperature estimation from the Landsat series, Rem. Sens., 12, 1471, https://doi.org/10.3390/rs12091471, 2020.
Fey, C. and Krainer, K.: Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy), Geomorphology, 365, 107261, https://doi.org/10.1016/j.geomorph.2020.107261, 2020.
Froitzheim, N., Schmid, S., and Conti, P.: Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubunden, Eclogae Geol. Helv., 87, 559–612, 1994.
Gök, D. T., Scherler, D., and Wulf, H.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps, The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024, 2024.
Goldstein, R. M. and Werner, C. L.: Radar interferogram filtering for geophysical applications, Geophys. Res. Lett., 25, 4035–4038, 1998.
Hachem, S., Duguay, C. R., and Allard, M.: Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain, The Cryosphere, 6, 51–69, https://doi.org/10.5194/tc-6-51-2012, 2012.
Haeberli, W.: Creep of mountain permafrost: internal structure and flow of alpine rock glaciers, Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eidgenossischen Technischen Hochschule Zurich, 77, ISSN 0374-0056, 1985.
Haeberli, W.: Mountain permafrost – research frontiers and a special long-term challenge, Cold Regions Sci. Tech., 96, 71–76, 2013.
Haeberli, W. and Beniston, M.: Climate change and its impacts on glaciers and permafrost in the Alps, Ambio, 27, 258–265, 1998.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Vonder Mühll, D.: Permafrost creep and rock glacier dynamics, Permafr. Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Harris, S. A. and Pedersen, D. E.: Thermal regimes beneath coarse blocky materials, Permafr. Periglac. Process., 9, 107–120, 1998.
Hedding, D. W.: Pronival rampart and protalus rampart: a review of terminology, J. Glac., 57, 1179–1180, https://doi.org/10.3189/002214311798843241, 2011.
Hotelling, H.: Analysis of a complex of statistical variables into principal components, J. Educ. Psych., 24, 417, https://doi.org/10.1037/h0071325, 1933.
Hu, Y., Arenson, L. U., Barboux, C., Bodin, X., Cicoira, A., Delaloye, R., Gärtner-Roer, I., Kääb, A., Kellerer-Pirklbauer, A., Lambiel, C., Liu, L., Pellet, C., Rouyet, L., Schoeneich, P., Seier, G., and Strozzi, T.: Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost, Rev. Geophys., 63, https://doi.org/10.1029/2024rg000847, 2025.
Humlum, O.: Active layer thermal regime at three rock glaciers in Greenland, Permafr. Periglac. Process., 8, 383–408, 1997.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial cycle in the European Alps, J. Quat. Sci., 23, 559–573, 2008.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock glaciers contain globally significant water stores, Scientific Reports, 8, 2834, https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and Betts, R. A.: The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya, Global and Planetary Change, 160, 123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., and Anderson, K.: Mountain glacier-to-rock glacier transition, Glob. Planet. Change, 181, 102999, https://doi.org/10.1016/j.gloplacha.2019.102999, 2019.
Jones, N., Strozzi, T., Rabatel, A., Ducasse, E., and Mouginot, J.: Surface instability mapping in alpine paraglacial environments using Sentinel-1 DInSAR techniques, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, https://doi.org/10.1109/JSTARS.2023.3287285, 2023.
Kääb, A., and Weber, M.: Development of transverse ridges on rock glaciers: field measurements and laboratory experiments, Permafrost and Periglacial Processes, 15, 379–391, https://doi.org/10.1002/ppp.506, 2004.
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021.
Kellerer-Pirklbauer, A. and Kaufmann, V.: About the relationship between rock glacier velocity and climate parameters in central austria, Austrian Journal of Earth Sciences, 105.2, 94–112, 2012.
Kellerer-Pirklbauer, A., Bodin, X., Delaloye, R., Lambiel, C., Gartner-Roer, I., Bonnefoy-Demongeot, M., Carturan, L., Damm, B., Eulenstein, J., Fischer, A., Hartl, L., Ikeda, A., Kaufmann, V., Krainer, K., Matsuoka, N., Morra Di Cella, U., Noetzli, J., Seppi, R., Scapozza, C., Schoeneich, P., Stocker-Waldhube, M., Thibert, E., and Zumiani, M.: Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock glacier velocities) in the European Alps in 1995–2022, Environ. Res. Lett., 19, 034022, https://doi.org/10.1088/1748-9326/ad25a4, 2024.
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E., and Volken, M.: Factors Controlling Velocity Variations at Short-Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps, Permafrost Periglac. Proc., 684, 675–684, https://doi.org/10.1002/ppp.1953, 2017.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Research, 83, 324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Kummert, M., Dealloying, R., and Braillard, L.: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps, Permafr. Periglac. Proc., 29, 21–33, https://doi.org/10.1002/ppp.1960, 2017.
Lambiel, C., Strozzi, T., Paillex, N., Vivero, S., and Jones, N.: Inventory and kinematics of active and transitional rock glaciers in the Southern Alps of New Zealand from Sentinel-1 InSAR. Arctic, Antarctic, and Alpine Research, 55, 2183999, https://doi.org/10.1080/15230430.2023.2183999, 2023.
Luo, D., Jin, H., and Bense, V. F.: Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau, Geoderma, 333, 57–68, 2019.
Malakar, N. K., Hulley, G. C., Hook, S. J., Laraby, K., Cook, M., and Schott, J. R.: An operational land surface temperature product for Landsat thermal data: Methodology and validation, IEEE Trans. Geosci. Rem. Sens., 56, 5717–5735, https://doi.org/10.1109/TGRS.2018.2824828, 2018.
Manconi, A.: How phase aliasing limits systematic space-borne DInSAR monitoring and failure forecast of alpine landslides, Eng. Geol., 287, 106094, https://doi.org/10.1016/j.enggeo.2021.106094, 2021.
Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., and Schoeneich, P.: Evaluating the destabilization susceptibility of active rock glaciers in the French Alps, The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, 2019.
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon, R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased, Comm. Earth Env., 2, 81, https://doi.org/10.1038/s43247-021-00150-6, 2021.
Nyenhuis, M., Hoelzle, M., and Dikau, R.: Rock glacier mapping and permafrost distribution modelling in the Turtmanntal, Valais, Switzerland, Zeitschrift für Geomorphologie, N. F., 49, 275–292, 2005.
Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo, J. C., and Zucca, F.: A methodology for improving landslide PSI data analysis, Int. J. Rem. Sens., 35, 2186–2214, https://doi.org/10.1080/01431161.2014.889864, 2014.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., and Abrams, M.: Online global land surface temperature estimation from Landsat, Rem. Sens., 9, 1208, https://doi.org/10.3390/rs9121208, 2017.
Pellet, C., Bodin, X., Cusicanqui, D., Delaloye, R., Kääb, A., Kaufmann, V. Noetzli, J., Thibert, E., Vivero, S., and Kellerer-Pirklbauer, A.: Rock Glacier Velocity, Bull. Amer. Meteor. Soc., 104, 41–42, https://doi.org/10.1175/2023BAMSStateoftheClimate.1, 2023.
RGIK: Rock glacier inventory using InSAR (kinematic approach), Practical Guidelines (version 3.0.2), IPA Action Group Rock glacier inventories and kinematics, https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/CCI/Guidelines/RGI_ka_InSAR-based_Guidelines_v.3.0.2.pdf (last access: 20 May 2024), 2020.
RGIK: Guidelines for inventorying rock glaciers: baseline and practical concepts (version 1.0), IPA Action Group Rock glacier inventories and kinematics, 25 pp., https://doi.org/10.51363/unifr.srr.2023.002, 2023a.
RGIK: Rock Glacier Velocity as an associated parameter of ECV Permafrost: Baseline concepts (Version 3.2), IPA Action Group Rock glacier inventories and kinematics, 12 pp., 2023b.
RGIK: Rock Glacier Velocity as associated product of ECV Permafrost: practical concepts (version 1.2), IPA Action Group Rock glacier inventories and kinematics, 17 pp., 2023c.
Rouyet, L., Lilleøren, K. S., Böhme,M., Vick, L.M., Delaloye, R., Etzelmüller, B., Lauknes, T. R., Larsen, Y., and Blikra, L. H.: Regional morpho-kinematic inventory of slope movements in northern Norway, Frontiers in Earth Science, 9, 681088, https://doi.org/10.3389/feart.2021.681088, 2021.
Scapozza, C., Lambiel, C., Baron, L., Marescot, L., and Reynard, E.: Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps, Geomorphology, 132, 208–221, https://doi.org/10.1016/j.geomorph.2011.05.010, 2011.
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.: Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps, Earth Surf. Proc. Land., 39, 2056–2069, https://doi.org/10.1002/esp.3599, 2014.
Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., and Crosta, G. B.: A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps, Geomorphology, 186, 136–149, https://doi.org/10.1016/j.geomorph.2012.12.028, 2013.
Shakesby, R. A.: Protalus ramparts, in: Encyclopedia of Geomorphology, edited by: Goudie, A., Vol. 1. Routledge, London, 813–814, 2004.
Smiraglia, C., and Diolaiuti, G. A.: LO STATO ATTUALE DEI GHIACCIAI ITALIANI E LA LORO RECENTE EVOLUZIONE: RISULTATI DI UN NUOVO INVENTARIO, Istituto Lombardo-Accademia di Scienze e Lettere-Rendiconti di Scienze, 2016.
Springman, S. M., Arenson, L. U., Yamamoto, Y., Maurer, H., Kos, A., Buchli, T., and Derungs, G.: Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives, Geografiska Annaler: Series A, Physical Geography, 94, 215–243, https://doi.org/10.1111/j.1468-0459.2012.00464.x, 2012.
Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in mountain environments, Progress in physical geography: Earth and Environment, 36, 421–439, https://doi.org/10.1177/0309133312441010, 2012.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., Kääb, A., Mätzler, E., and Schrott, L.: Monitoring rock glacier kinematics with satellite synthetic aperture radar, Rem. Sens., 12, 559, https://doi.org/10.3390/rs12030559, 2020.
Vonder Mühll, D. and Haeberli, W.: Thermal Characteristics of the Permafrost within an Active Rock Glacier (Murtèl/Corvatsch, Grisons, Swiss Alps), J. Glac., 36, 151–158, https://doi.org/10.3189/S0022143000009382, 1990.
Vonder Mühll, D., Arenson, L. U., and Springman, S. M.: Temperature conditions in two Alpine rock glaciers. Proceedings of the International Conference on Permafrost, Zürich, Switzerland, 21–25, http://hdl.handle.net/20.500.11850/54148 (last access: 21 October 2025), 2003.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Zhang, X., Feng, M., Zhang, H., Wang, C., Tang, Y., Xu, J., Yan, D., and Wang, C.: Detecting rock glacier displacement in the central Himalayas using multi-temporal InSAR, Rem. Sens., 13, 4738, https://doi.org/10.3390/rs13234738, 2021.
Short summary
We present a semi-automatic method integrating geomorphological data, permafrost extent, and Sentinel-1 differential interferometric synthetic-aperture radar (DInSAR) wrapped-phase signals to assess the activity of 514 periglacial landforms across 1000 km² in Upper Valtellina (Italian Alps). Four activity classes are identified and validated with geomorphological evidence and multivariate statistics. Results highlight the potential of wrapped DInSAR products, free from unwrapping errors, for regional-scale screening and site-specific study selection.
We present a semi-automatic method integrating geomorphological data, permafrost extent, and...