Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4805-2025
https://doi.org/10.5194/tc-19-4805-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Sea ice concentration estimates from ICESat-2 linear ice fraction – Part 1: Multi-sensor comparison of sea ice concentration products

Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri

Related authors

Sea ice concentration estimates from ICESat-2 linear ice fraction – Part 2: Gridded data comparison and bias estimation
Christopher Horvat, Ellen Buckley, and Madelyn Stewart
The Cryosphere, 19, 4819–4833, https://doi.org/10.5194/tc-19-4819-2025,https://doi.org/10.5194/tc-19-4819-2025, 2025
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Linear Ice Fraction: Sea Ice Concentration Estimates from the ICESat-2 Laser Altimeter
Christopher Horvat, Ellen Buckley, Madelyn Stewart, Poom Yoosiri, and Monica M. Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2312,https://doi.org/10.5194/egusphere-2023-2312, 2023
Preprint withdrawn
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary

Cited articles

Alekseeva, T., Tikhonov, V., Frolov, S., Repina, I., Raev, M., Sokolova, J., Sharkov, E., Afanasieva, E., and Serovetnikov, S.: Comparison of Arctic Sea Ice concentrations from the NASA team, ASI, and VASIA2 algorithms with summer and winter ship data, Remote Sensing, 11, 2481, https://doi.org/10.3390/rs11212481, 2019. a
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. a
Buckley, E.: Surface Classification of Operation IceBridge April 2018 Imagery (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.13129097, 2024. a
Buckley, E. M., Farrell, S. L., Duncan, K., Connor, L. N., Kuhn, J. M., and Dominguez, R. T.: Classification of Sea Ice Summer Melt Features in High‐Resolution IceBridge Imagery, Journal of Geophysical Research: Oceans, 125, https://doi.org/10.1029/2019JC015738, 2020. a, b, c
Buckley, E. M., Farrell, S. L., Herzfeld, U. C., Webster, M. A., Trantow, T., Baney, O. N., Duncan, K. A., Han, H., and Lawson, M.: Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2, The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023, 2023. a, b
Short summary
Sea ice coverage is a key indicator of changes in polar and global climate. There is a long (over 40 years) record of sea ice concentration and area from passive microwave measurements. In this work we show the biases in these data based on high-resolution imagery. We also suggest the use of ICESat-2, a high- resolution satellite laser, that can supplement the passive microwave estimates.
Share