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Abstract. Sea ice coverage is a key indicator of changes
in polar and global climate. Observational estimates of the
area and extent of sea ice are primarily derived from pas-
sive microwave surface emissions, which are used to develop
gridded products of sea ice concentration (SIC). Passive mi-
crowave (PM) satellite sensors remain the sole global prod-
uct for understanding SIC variability. Here, in Part I of a
two-part study, we use a dataset of more than 70 000 high-
resolution airborne optical classified images from Operation
IceBridge, and we first identify biases in commonly used
passive microwave products in areas with thin sea ice frac-
tures. We find that passive-microwave-derived SIC products
overestimate true SIC with biases on average 4.4 % in win-
ter and 3.2 % in summer. Despite the low mean bias in the
summer, uncertainty increases in the summer due to com-
plex surface conditions, leading to a wider spread in SIC
biases than in winter. We show that ICESat-2, a laser al-
timeter operational since 2018, has the capacity to sample
these thin fractures, with good agreement between ICESat-2
surface-type classifications and near-coincident WorldView
and Sentinel-2 data in winter. Using the ICESat-2 surface-
type classifications, we introduce a new derived parameter,
the linear ice fraction (LIF), and discuss its potential for rep-
resenting a two-dimensional sea ice concentration field. This
paper highlights the biases present in PM-derived SIC and
makes a case for considering the integration of ICESat-2
and its high-precision measurements of the sea ice surface
to enhance future SIC estimations. In Part II, we identify and
evaluate biases associated with the LIF through emulation of
ICESat-2 overflights of the data explored here and develop a

gridded LIF product, which we compare to gridded PM-SIC
data.

1 Introduction

Sea ice concentration (SIC), the fraction of an ocean area
covered by sea ice, is critically important for understanding
Earth’s climate variability. Since the late 1970s, SIC has been
estimated globally and daily using passive microwave (PM)
satellites in both hemispheres. Numerous algorithms (at least
11, Kern et al., 2019) have been developed which convert sur-
face radiative properties into gridded SIC on timescales from
days to months. PM-derived SIC is a standard for assessing
sea ice state and change (Meredith et al., 2022) and is assimi-
lated into state-of-the-art forecast and climate models at both
hemispheres (Mazloff et al., 2010; Sakov et al., 2012; Mas-
sonnet et al., 2015; Verdy and Mazloff, 2017; Zhang et al.,
2018; Fritzner et al., 2019; Zhang et al., 2021). Yet these
SIC products are constrained by various shortcomings of PM
sensors, including their coarse resolution and sensitivities to
surface water, which prevent them from accurately capturing
small-scale features and certain sea ice properties (Ivanova
et al., 2015; Kern et al., 2016).

Sea ice is a heterogeneous, fractured mosaic of solid floes
or plates ranging in size from meters to hundreds of kilo-
meters and whose surface is comprised of some combination
of ice, snow, and meltwater. Cracks in the sea ice, known as
leads, are narrow in width (ranging from 1 m to hundreds of
meters) and vary over length scales of kilometers to hundreds
of kilometers and open and close on timescales of minutes
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to weeks (Bouillon and Rampal, 2015; Hutter et al., 2019;
Ólason et al., 2021; Hutter and Losch, 2020). Uncertainty
in PM-derived SIC can arise from the presence of leads,
which are challenging to detect due to their near-linear ge-
ometry and high variability. When examining 11 different
PM SIC products in regions with near-100 % SIC in winter,
Kern et al. (2019) found systematic algorithmic differences
between products that range from −1.1 % to 3.5 %. While
these differences are small in terms of the overall SIC, air–
sea exchange in leads is an important source of ocean mixing
and energy in winter. A second, larger discrepancy in PM-
SIC comes in summer, when PM-SIC estimates vary up to
35 % (Kern et al., 2020). Melt ponds on the sea ice appear
radiometrically similar to open water and can be conflated
with open water (Ulaby et al., 1986; Kern et al., 2016), ham-
pering the ability of PM algorithms to ascertain the true sea
ice coverage.

Local errors in PM-SIC are observed to have a compensat-
ing effect when integrated over the Arctic or Antarctic, and
hence the impact of algorithmic uncertainty or bias on esti-
mates of total sea ice coverage is estimated to be less than
1 %, even in summer (Notz, 2015; Meier and Stewart, 2019;
Kern et al., 2020). Still, no independent alternative to PM ex-
ists for measuring SIC from local to global scales. Thus it
is not clear whether biases exist in PM-SIC algorithms that
go beyond normally distributed uncertainties, which might
affect climate process understanding, forecast model data as-
similation, and future projections.

In this, study, we investigate an independent measure of
sea ice presence, the linear ice fraction (LIF), developed us-
ing NASA’s ICESat-2 laser altimeter (IS2). IS2 is a photon-
counting laser altimeter with 0.7 m along-track sampling,
a 11 m footprint, and high skill in differentiating sea ice
and open water in non-summer months (Farrell et al., 2020;
Kwok et al., 2020; Magruder et al., 2021; Kwok et al.,
2021). Compared to radar altimeters, IS2 is less susceptible
to “snagging” by leads or melt ponds. IS2 can resolve Arc-
tic leads at the meter scale (Petty et al., 2021; Kwok et al.,
2021), especially in winter, but has shown a limited ability
to identify melt ponds atop Arctic sea ice in summer (Farrell
et al., 2020; Tilling et al., 2020). Importantly, IS2 (an active
532 nm green laser) does not rely on the PM signature of sea
ice (radiation in the 10–100 GHz range) and has independent
uncertainties.

We first explore errors and uncertainty in PM-SIC mea-
surements using a set of more than 70 000 classified images
from NASA’s Operation IceBridge Digital Mapping System
(Buckley et al., 2020) in Sect. 3, illustrating the need to im-
prove estimates of SIC in compact and ponded ice. Then,
using high-resolution imagery from different sources, we
show that LIF derived from a single ICESat-2 pass is at
least as skilled at PM products at reconstructing local SIC
for SIC near 100 %. In Part II (Horvat et al., 2025), we con-
struct uncertainty estimates for unsupervised LIF retrievals
in the Arctic using these classified images, which are explic-

itly constrained to build a global product. We then evaluate
global differences between monthly IS2 LIF and six com-
monly used PM-SIC products at different resolutions.

2 Passive microwave sea ice concentration products

Passive microwave datasets provide long-term, consistent in-
formation for the characterization of sea ice presence and
variability. The launch of the Scanning Multichannel Mi-
crowave Radiometer (SMMR) in 1978 began the record of
multichannel data that allowed for understanding surface
types and ice temperature. Passive microwave sensors of-
fer the advantage of being able to penetrate cloud cover and
operate in both daylight and darkness, enabling year-round
monitoring in the polar regions. Brightness temperature can
be used to calculate SIC and, in turn, sea ice area and ex-
tent. In this work, we utilize several data products from var-
ious sensors and algorithms to accurately represent the com-
monly used PM-SIC products within the modeling and ob-
servational community (Table 1).

2.1 Instruments

The Scanning Multichannel Microwave Radiometer
(SMMR) was a 10-channel radiometer with both horizontal
and vertical polarizations (Gloersen and Barath, 1977),
which flew on the Nimbus-7 and SeaSat satellites. Although
SeaSat was only operational for a few months, the SMMR
instrument on Nimbus provided operations from 1978 to
1987. Satellites belonging to the Defense Meteorological
Satellite Program (DMSP), a United States Department
of Defense program, have carried the Special Sensor Mi-
crowave/Imager (SSM/I) radiometers and its successor,
the Special Sensor Microwave Imager/Sounder (SSMI/S)
radiometers. SSM/I radiometers were first launched on
DMSP satellites from 1987 to 1999 and SSMIS radiometers
from 2003 to 2014. The SSMIS is a 24-channel instru-
ment that combines the imaging capabilities of the SSM/I
with the Special Sensor Microwave Temperature sounder
(Kunkee et al., 2008). The Advanced Microwave Scanning
Radiometer (AMSR) series started with AMSR-J on JAXA’s
ADEOS-II launched in 2002 and was followed by AMSR-E
(NASA’s Aqua, 2002) and AMSR-2 (JAXA’s GCOM W1,
2012) (Imaoka et al., 2010). Each advancement in passive
microwave radiometers brings additional channels across a
broader frequency spectrum, along with improved coverage
and higher resolution.

2.2 Algorithms

Algorithms for converting brightness temperatures into sea
ice concentration have also advanced over the satellite pe-
riod, incorporating new spectral frequencies and addressing
known data biases. Various studies have detailed the evolu-
tion, discrepancies, and limitations of these algorithms. We
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Table 1. Passive microwave product details.

Product Abbr. Sensor Algorithm Grid∗ Dates available
(yyyy-mm-dd)

Reference

Sea Ice Concentrations from
Nimbus-7 SMMR and DMSP
SSM/I-SSMIS Passive Mi-
crowave Data, Version 2

NT SMMR,
SSM/I-SSMIS

NASA Team 25 km ps 1978-11-01–present Cavalieri et al. (1984)

Bootstrap Sea Ice Concentra-
tions from Nimbus-7 SMMR
and DMSP SSM/I-SSMIS, Ver-
sion 4

BT SMMR,
SSM/I-SSMIS

NASA
Bootstrap

25 km ps 1978-11-01–present Comiso and Sullivan
(1986)

NSIDC Climate Data Record NSIDC SMMR,
SSM/I-SSMIS

NASA Team &
Bootstrap

25 km ps 1978-10-25–present Meier et al. (2014);
Peng et al. (2013)

OSISAF Global Sea Ice Con-
centration Climate Data Record
OSI-430-A, OSI-450-A

OSI SSMIS OSI 25 km EASE2 1978-10-24–2020-12-
31 (450) 2021-01-01–
present (430)

Lavergne et al. (2019)

AMSR-E/AMSR2 Unified L3
Daily 25 km Brightness Tem-
peratures & Sea Ice Concentra-
tion Polar Grids, Version 1

AMSR2-NT AMSR2 NASA Team 2 25 km ps 2012-07-02–present Meier et al. (2018)

Sea Ice Concentration data
from AMSR-E, AMSR2 & SS-
MIS, U Bremen and U Ham-
burg ASI algorithm, Version 1

AMSR2-ASI AMSR-E/2,
SSMIS

ARTIST 6.25 km ps 2002-06-02–present Spreen et al. (2008a)

∗ ps= polar stereographic.

do not aim to provide an in-depth description of the previ-
ous work here. Instead, we offer a summary of the details
relevant to our study. For more comprehensive information,
readers are encouraged to consult the references provided in
this section and above.

2.2.1 NASA Team

The NASA Team algorithm (NT, Cavalieri et al., 1984) was
initially developed to determine sea ice concentration from
SMMR and later modified for SSMI/s (Cavalieri et al., 1991).
The observed brightness temperature is considered the sum
of three surface types: open water, first-year ice, and multi-
year ice. Based on the differences in emissivities of these
surface types at the frequencies captured by these sensors,
radiance ratios are developed to distinguish the observed sur-
face types. Radiance ratios are useful in that they are not de-
pendent on the ice temperature variations but rather the re-
lationship between ice temperature at different frequencies.
This algorithm utilizes the 37 GHz vertical and the 19 GHz
vertical and horizontal channels (37V, 19V, and 19H, respec-
tively) and includes a weather filter based on two gradient
ratios, one with 37V and 19V and an additional one using
the 22V and 19V channels (for SSMI/S-derived products).
The NASA Team 2 (NT2) algorithm Markus and Cavalieri
(2009) was developed to address the sensitivity to emissiv-
ity variations, specifically low SIC bias in areas with deep
snow. NASA Team 2 utilizes channels at higher frequencies
(85 GHz for SSMI/S and 89 for AMSR) that feed into a ra-
diative transfer model to provide atmospheric correction to
the retrievals.

2.2.2 NASA Bootstrap

The NASA Bootstrap algorithm (BT, Comiso and Sullivan,
1986) uses the distribution of brightness temperatures from
37H, 37V, and 19V channels to determine surface types. Un-
like the NASA Team algorithm, Bootstrap uses daily varying
tie points to account for changing surface conditions (e.g.,
melting). This algorithm also makes use of the 22V channel
for reducing atmospheric effects and depends on an assump-
tion in this algorithm that there exist regions in the Arctic that
contain 100 % ice concentration.

Comiso et al. (1997) report the biggest discrepancies be-
tween Bootstrap and observations in the marginal seas. In
the Fram Strait and the Northern Barents Sea, they found the
BT algorithm produced SIC∼ 5 % greater than that produced
by NT – though both, when compared with airborne SAR
data, underestimate SIC at the edge of the ice pack. Valida-
tion efforts in the Beaufort Sea and Bering Sea conducted in
1998 found that the algorithms underestimate SIC compared
to Landsat imagery by 8.2 % and 6.1 % on average for NT
and BT, respectively (Cavalieri et al., 1991). The differences
in SIC are caused by temperature, emissivity, and tie point
effects on the two algorithms, and both algorithms struggle
with the identification of new, thin ice.

2.2.3 NSIDC Climate Data Record

To reduce biases for climate applications, the NSIDC Cli-
mate Data Record (NISDC) is a rule-based merge of the
BT and NT algorithms. The ice edge is defined where the
BT algorithm finds SIC < 10 %. Otherwise, the value of the
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NSIDC is the maximum of the BT and NT algorithms. As
both algorithms tend to underestimate SIC in different areas,
this maximization decreases the overall low bias in PM-SIC.

2.2.4 ARTIST sea ice

The Arctic Radiation and Turbulence Interaction Study
(ARTIST) sea ice algorithm (ASI) from the University of
Bremen and University of Hamburg uses higher-frequency
channels (89V and 89H) in ASMR-E and AMSR-2 (Spreen
et al., 2008b), which allows for products with a resolution
that is 4 times higher; these products are on a 6.25 km po-
lar stereographic grid. The higher-frequency channel is more
sensitive to weather, and thus a lower-frequency channel is
used for weather corrections. This algorithm also utilizes
fixed tie points, which may lead to biases over seasonal
changes or as the instruments degrade. It has been found that
the ASI algorithm, as well as the NT and BT, tends to un-
derestimate sea ice concentration in the marginal ice zone
(Alekseeva et al., 2019).

2.2.5 Ocean and Sea Ice Satellite Applications Facility

The Ocean and Sea Ice Satellite Applications Facility (OSI
SAF) CDR is a hybrid approach like the NSIDC-CDR, which
utilizes distinct methods for low SIC areas (≤ 40 % SIC) and
high SIC areas (Lavergne et al., 2019; Tonboe et al., 2016).
The low SIC algorithm is derived from the BT algorithm,
while the high SIC algorithm is based on the Bristol algo-
rithm, which incorporates polarization and spectral gradient
information from the 19V, 37V, and 37H channels. Both em-
ploy dynamic tie points and atmosphere correction and pro-
vide uncertainty estimates.

3 Comparing sea ice concentration products to
high-resolution visible imagery

Operation IceBridge (OIB) was a multi-year observational
campaign which bridged the time period between the ICE-
Sat and ICESat-2 satellite operational eras. IceBridge flights
captured along-track optical imagery of the sea ice surface –
here we examine a set of 70 165 geolocated and orthorecti-
fied images taken in March and April 2018 (pre-surface melt)
and during the July Arctic campaigns in 2016 and 2017 (dur-
ing surface melt) (Dominguez, 2010). The Digital Mapping
System (DMS) imagery has 0.1 m resolution and is approx-
imately 400 m× 600 m. Each image is then processed ac-
cording to the classification scheme of Buckley et al. (2020)
(hereafter B20), which classifies each image pixel into ice,
open-water, and seasonal-specific categories: melt pond in
the summer and new ice in the winter. Classified imagery
was then visually validated. Details on the classification al-
gorithm are available in Buckley et al. (2020, 2023).

To assess the performance of passive microwave SIC prod-
ucts, we used the following approach: each B20-classified

DMS image scene is compared to local SIC evaluated using
six commonly used daily gridded PM-SIC (Table 1). Since
PM swaths (O 10 km) and image sizes (O 1 km) are not
similar, we use two methods for comparing airborne point
measurements to the gridded satellite products. In the first
method, we average all OIB SIC values inside of a single
PM grid to account for varying ice conditions within the PM
swath. In the second method, we take the center latitude and
longitude of the optical image and identify the grid cell in
which this coordinate falls within the native grid of the SIC
product. We find similar results, and we focus primarily on
the first method (averaging DMS image statistics) as this is
more representative of the entire PM cell. The results from
method two can be found in Appendix A.

We only examine DMS images where all PM-SIC prod-
ucts have a SIC value above 15 %, to avoid measurements
outside the marginal ice zone. Since this study focuses on
regions with sea ice leads, we limit our examination to win-
ter locations where OIB imagery indicates SIC ≤ 99 %. In
the summer, we restrict the analysis to images with MPF
≤ 50 % to reduce the influence of potentially misclassified
images that may produce unrepresentatively high melt pond
fractions. When averaging OIB images to the PM grid scale,
we are left with 20 498 unique OIB scenes: 15 270 points of
comparison in “summer” and 5228 in “winter”. Comparative
results are presented in Fig. 2, with winter results in the first
column, summer results in the second, and the first method
displayed in the top row, while the second method is shown
in Appendix A.

Comparative statistics for all data are collected in Table 2,
which include the mean SIC value (SIC) and differences be-
tween the B20-derived SIC and the PM-derived SIC. The
distribution of differences from the B20 data (1) are then
shown in Fig. 2a and b, along with median differences and
interquartile ranges.

3.1 Winter sea ice concentration

During winter, in areas that are not 100 % ice-covered (OIB
SIC≤ 0.99), PM products overestimate SIC on average, but
there is some spread. When the OIB imagery-derived SIC is
averaged within a PM grid cell, the PM products exhibit me-
dian positive biases ranging from 0.5 % to 2.3 %, with mean
biases spanning 1.1 % to 5.5 % (Fig. 2a, Table 2). While this
reflects generally good agreement between the PM products
and the SIC from imagery, even a small difference between
99 % and 98 % SIC can result in a doubling of the open-water
area (from 1 % to 2 % open-water area), significantly increas-
ing heat and moisture exchange between the ocean and at-
mosphere. Median biases are lower than the mean biases,
indicating that there are incidences of high overestimations
of SIC in the PM datasets that impact the mean biases. The
NSIDC product takes the higher of the BT and NT products,
and because NT is consistently lower than BT, NSIDC biases
have a mean and range similar to the BT biases.
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Figure 1. Imagery location. Operation IceBridge flight lines for the July 2016 (blue) and 2017 (orange) summer Arctic sea ice campaigns,
and the spring 2018 flight lines (green). The footprints (boxed) of the WorldView and Sentinel-2 images used for validation of the ICESat-2
LIF: 7 April 2020 (black), 25 April 2022 (red), 25 April 2022 (cyan), and 7 May 2022 (purple).

Table 2. Comparison of mean and median differences in sea ice concentration for winter and summer.

Winter (March–April 2018) Summer (July 2016, 2017)

B20 SIC mean (%) Mean 1 Median 1 B20 SIC mean (%) Mean 1 Median 1

NSIDC 93.8 4.6 2.3 80.1 8.1 7.3
BT 93.8 4.5 2.3 80.1 8.2 7.3
NT 93.8 1.1 1.3 80.1 −8.5 −8.4
AMSR 93.8 4.9 2.1 80.1 10.0 9.2
OSI 93.6 3.5 0.5 84.2 1.4 4.4
ASI 91.6 5.5 0.8 80.6 1.0 3.9

3.2 Summer sea ice concentration

During summer, all PM products, except the NASA Team
Algorithm using SSMIS data, exhibit a positive mean SIC
bias. Median biases range from−8.4 % to 9.2 %, while mean
biases range from −8.5 % to 10 %. Compared to winter bi-
ases, the summer absolute biases are greater and have a much
wider range, indicating more uncertainty. We find that the NT
product provides the lowest SIC estimates among the algo-
rithms evaluated, with this negative bias more pronounced in
summer than winter. This is consistent with findings from
Kern et al. (2020), who showed that NT products tend to
underestimate SIC in the Arctic during summer due to their
high sensitivity to surface melt and use of fixed, hemispheric
tie points that do not capture evolving surface conditions. In

contrast, we found products using the BT, NT2, and NSIDC
algorithms tend to overestimate SIC, with biases of 5 %–
10 %, consistent with Kern et al. (2020). Kern et al. (2020)
also identified the OSI SAF product as having the lowest ab-
solute bias, which aligns with our findings (Fig. 2b and Ta-
ble 2).

These varying biases reflect the challenges PM algorithms
face in summer when complex surface conditions – such as
widespread melt ponds, wet snow, and variable ice concen-
trations – distort the microwave signal. While melt ponds
can cause underestimation when misclassified as open wa-
ter, they can also lead to overestimation when their presence
affects the determination of tie points. Algorithms like OSI
SAF attempt to mitigate this by using daily updated dynamic
tie points, whereas NT and NT2 rely on static tie points that
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Figure 2. Differences between passive microwave SIC retrievals and Operation IceBridge SIC for winter (a) and summer (b). 1 SIC is given
as the PM product less the OIB SIC value, where values > 0 indicate the PM SIC product is greater than imagery-derived SIC. OIB image
SIC values within a PM grid cell are averaged for comparison with the PM SIC value. Winter scenes are included where OIB SIC ≤ 99 %.
Each box plot shows the interquartile range (IQR), which is the 25th percentile to 75th percentile. The line inside the box plot represents the
median. The whiskers show the range which is defined here as 1.5 times the IQR.

are not adapted to melt season variability. These contrasting
sensitivities to melt processes contribute to both under- and
overestimation of SIC and explain the wider spread in PM
SIC error observed in summer (Fig. 2b) compared to winter
(Fig. 2a).

We grouped cell-averaged OIB melt pond fraction (MPF)
derived from B20 into 5 % intervals and analyzed the mean
absolute bias for each group. Figure 3 illustrates the rela-
tionship between increasing MPF and PM-SIC bias across
products. The delineated interquartile ranges emphasize that
not only does the bias increase with MPF, but the variability
across scenes also grows, underscoring the challenge of accu-
rately estimating SIC under ponded conditions due to spec-
tral variability in melt pond signatures. This trend is most ex-
treme with the NT product, indicating that the melting sea ice
surface strongly affects the algorithm accuracy. The AMSR
product with the NT2 algorithm has the second-largest biases
at high MPF values (MPF≥ 25 %).

The comparison here is subject to important limitations,
including uncertainties in surface classification and mis-
matches between satellite footprints. We discuss the appli-
cability and limitations of this approach in more detail in
Sect. 5. Yet because of these consistent biases, we seek then
to understand the applicability of alternative methods for re-
trieving SIC to reduce, understand, or constrain these uncer-
tainties.

4 ICESat-2 and the linear ice fraction

The Ice Cloud and land Elevation Satellite – 2 (ICESat-
2; IS2) was launched in September 2018 carrying the Ad-
vanced Topographic Laser Altimeter System (ATLAS). The
photon counting, 532 nm (green), six-beam laser system was

Figure 3. Bias as a function of MPF. Differences between passive
microwave SIC retrievals and Operation IceBridge SIC in summer
vs. melt pond fraction. Biases are plotted at 5 % bins. The 25th and
75th percentile values are shown as faded lines. Note that the av-
erage melt pond fraction (MPF) within a PM grid cell is typically
greater than 5 %; only within the smaller 6.25 km ASI grid cells is
the average OIB-derived MPF below 5 % for some cells.

designed specifically to measure height of the cryosphere
and understand sea ice thickness distribution and elevation
changes in ice sheets and glaciers (Markus et al., 2017).
ICESat-2 allows for high-resolution sampling of the ice with
a ∼ 11 m footprint Magruder et al. (2020), compared to the
∼ 70 m footprint of ICESat (Kwok et al., 2004). Although the
six-beam configuration was developed to understand slope
changes on ice sheets, it provides additional opportunities for
observing the sea ice surface. The high resolution and the in-
creased sampling have allowed for the resolution of narrow
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leads in the sea ice pack that are crucial for determining accu-
rate freeboard estimates. Kwok et al. (2019b) found that IS2
can consistently resolve leads as narrow as 27 m, although
due to the incidence angle of ICESat-2 relative to the orienta-
tion of the lead, finer-scale cracks are likely still represented
in IS2 sea ice products (Hell and Horvat, 2024).

The IS2 dataset ATL07 consists of a set of along-track sur-
face segments (Kwok et al., 2022). Each ATL07 segment is
created from an aggregate of 250 photons, with lengths rang-
ing from ∼ 10 to 200 m depending on how reflective the sur-
face is (Kwok et al., 2019b). Segments are provided in lo-
cations where the local daily NSIDC-CDR sea ice concen-
tration exceeds 15 % and average ∼15 m for the strong beam
and∼60 m for the weak beam (Kwok et al., 2019a). A classi-
fication algorithm is applied to the ATL07 segments to deter-
mine the surface contained in each segment. The goal of the
classification is to identify sea ice segments that can be used
for freeboard (ATL10) calculation, which requires measure-
ments of the ice and sea surfaces. The surface-type classifica-
tion parameter (seg_surf_type) is based on three parameters:
the surface photon rate, the width of photon distribution, and
the background rate normalized to the sun elevation. This
results in five main classification categories and associated
parameter values: cloud-covered (0), ice (1), specular lead
(2–5), dark lead (6–9), and unclassified (−1). Further classi-
fications within the dark and specular categories distinguish
rough vs. smooth and the background photon rate. IS2 also
detects dark or gray ice that might ordinarily be recorded as
ocean in passive microwave calculations (Petty et al., 2021).

We define the linear ice fraction (LIF):

LIF= 100×
length of ice segments

length of all surface segments
, (1)

where we do not include cloud-covered (seg_surf_type= 0)
or unclassified segments (seg_surf_type=−1). LIF is a one-
dimensional analog of the SIC, which can be calculated in
a domain either based on a single satellite pass (using all
six beams), or by compiling many intersecting passes as we
explore in Horvat et al. (2025). We pre-process all ATL07
IS2 tracks by removing anomalous segments longer than
200 m and eliminating segments that have fewer than two
neighboring segments within 1 km along track as in Horvat
et al. (2020). While the ATL07 product is limited to regions
with passive microwave SIC > 15 %, the LIF is derived from
the ICESat-2 surface-type classifications that rely solely on
ICESat-2’s photon cloud and is thus independent of passive
microwave inputs, especially given the high-concentration
ice we consider here.

4.1 Comparison of a single-pass LIF with observations

The LIF product has promise in its ability to improve es-
timates of SIC, but alone it may not accurately represent
a two-dimensional field like SIC. We examine four high-
resolution images coincident in space and near-coincident in

time with IS2 overflights in regions with a high concentra-
tion of leads, three from Sentinel-2 optical imagery and one
from the WorldView satellite (shown in Fig. 4). WorldView-
2 is a member of the Maxar WorldView Legion with com-
mercial satellites providing high-resolution multispectral im-
agery. The red, green, and blue bands have 1.85 m resolu-
tion, higher than the IS2 footprint. The Sentinel-2 (S2) mis-
sion consists of a pair of satellites carrying the Multispectral
Imager (MSI) acquiring data in 13 bands. The red, green,
blue, and near-infrared bands (B02, B03, B04, and B08)
are at 10 m resolution, a resolution similar to the IS2 foot-
print (Drusch et al., 2012). We examine 25 km× 25 km ar-
eas of the Sentinel-2 imagery with the ICESat-2 tracks in-
tersecting 25 km of the image. The ICESat-2 tracks transect
the 14 km× 17 km WorldView image for 14.2 km. Follow-
ing Buckley et al. (2023), we classify the WorldView and
Sentinel-2 image pixels into surface types: open water, ice,
and other (new ice). The other pixels in these winter scenes
are associated with new ice that appears gray in color, which,
for SIC and LIF calculations, is considered ice.

We account for the time difference between the imagery
and the ICESat-2 overpass by applying a drift correction.
We use the daily sea ice motion vectors from the Polar
Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors
(Tschudi et al., 2019) to find the daily average magnitude
and direction of the ice drift. We then multiply this value (in
m s−1) by the seconds between the image acquisition and the
ICESat-2 sampling. The magnitude of the ice drift between
the sampling ranges from 22 m over 15 min to 270 m over 2 h
and 8 min. We visually verified the effectiveness of the drift
correction by ensuring that leads identified in the ICESat-2
surface-type classifications aligned with corresponding leads
in the optical imagery. Figure 5 demonstrates the effective-
ness of the ICESat-2 ATL07 surface-type classification in
identifying small leads and cracks in the sea ice, as indi-
cated by segments classified as leads in areas where the im-
agery shows the presence of open water. In these late-spring
Sentinel-2 images, new ice has formed within cracks and
leads that develop as sea ice floes diverge, exposing ocean
water to the cold atmosphere. The image classification algo-
rithm identifies these features as “new ice”, characterized by
reflectance values intermediate between those of open water
and consolidated sea ice. ICESat-2’s surface-type algorithm
may classify these areas as either ice or leads. The “correct”
classification depends on the intended use of the LIF dataset.
For studies of atmosphere–ocean exchange, new ice is better
treated as sea ice, since even a thin ice layer can significantly
suppress heat and moisture fluxes. However, for navigational
applications, this newly formed ice remains weak and easily
traversable by ships, making a classification as open water
potentially more appropriate.

We calculate two different LIF metrics for each drift-
corrected scene. First, we calculate a “best” LIF by extracting
the value of the classified WorldView or Sentinel-2 imagery
at the location of each ATL07 segment for all six IS2 beams.
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Table 3. Comparison of LIF and SIC from ICESat-2, drift-corrected optical imagery, and passive microwave products.

Date 7 Apr 2020 25 Apr 2022 27 Apr 2022 7 May 2022

Location (−135,78.0) (−127.7,73.9) (−111.8,79.7) (−129.2, 75.4)

SIC SIC 1 SIC 1 SIC 1 SIC 1 |1|

Optical 97.5 – 97.9 – 98.7 – 90.5 – –

IS2
Best 97.5 0.0 95.7 −2.1 98.7 0.0 92.4 1.9 1.0
ATL07 99.3 1.8 98.3 0.5 99.8 1.1 96.6 6.1 2.4

PM

ASI 94.5 −3.0 98.7 0.9 97.0 −1.7 96.7 6.1 2.9
OSI 99.9 2.4 95.5 −2.4 95.0 −3.8 100.0 9.4 4.5
NSIDC 100.0 2.5 100.0 2.1 100.0 1.3 100.0 9.5 3.8
NT 100.0 2.5 100.0 2.1 100.0 1.3 100.0 9.5 3.8
BT 99.2 1.7 100.0 2.1 100.0 1.3 100.0 9.5 3.6

Figure 4. (a) RGB WorldView-2 image taken on 7 April 2020. Straight lines are the overflight of the ICESat-2 laser altimeter. (b) Classifi-
cation of the image by the B20 algorithm into open water, new ice, and sea ice.

Second, we use the values of the ATL07-derived surface-type
classifications after post-processing to determine the ATL07-
derived LIF (Eq. 1). We compare these against the local val-
ues of optically derived SIC from the imagery and the local
PM-derived SIC (bound to the area of the optical imagery)
from the five products listed in Table 3. In each case we
compute biases relative to the optical imagery SIC. Given the
large scale of the Sentinel-2 and WorldView images (O(10–
102 km)) and the small delta time between ICESat-2 and im-
agery observations and the resulting small drift corrections
(300 m or less), the ICESat-2 pass across an image is rep-
resentative of the image as a whole even if the drift cor-
rections are not precise. Note that although the optical im-
agery is drift-corrected, the timing of the ICESat-2 and PM
satellites is also asynchronous. However, given the resolu-
tion of PM SIC data is on the order of km, we do not drift-
correct these data. Nonetheless, some biases could emerge

because of changes to sea ice over that domain between satel-
lite passes. For these reasons, we average the LIF across an
image of PM domain to minimize the error due to sea ice
drift.

In Table 3, we tabulate biases for all images and compile
the average imagery bias by taking the mean of the absolute
bias across the four images. Even for a single pass, the “best”
and ATL07-based IS2 LIF outperforms the PM-SIC prod-
ucts, with a mean bias of 1.0 % and 2.4 %, compared to mean
biases of at least 2.9 % for the PM products. This is especially
notable in the 7 May 2022 image, an area of highly fractured
sea ice which is considered completely ice-covered by four
of the PM satellites. For all four images, the NSIDC CDR es-
timates 100 % SIC, though the imagery shows between 1.3 %
and 9.5 % open-water fraction. The standard ATL07 product
outperforms the PM products, with a median error for ATL07
classification similar to the best-case error for all PM-SIC
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Figure 5. Sentinel-2 image classification and ICESat-2 overpass. Each panel displays Sentinel-2 RGB imagery overlaid with the ICESat-2
ground track. ATL07 segments are colored by ICESat-2 surface-type classification: leads (large blue dots) and ice (red dots). Sentinel-2
imagery is classified by surface type: ice (red), open water (blue), and new ice (cyan). The green box indicates the area enlarged in the
zoomed-in figure to the right. Panels show data from three Sentinel-2 scenes acquired on (a) 25 April 2022, (b) 27 April 2022, and (c) 7 May
2022.

retrievals in OIB data (see Table 2). The ASI 6.25 km reso-
lution SIC performs similarly to the ATL07 products in the
four sample images (see Table 3). Although the LIF may not
outperform all products in all scenarios, it provides a new
metric worthy of further consideration and comparison. Still,
there remains substantial room for improvement in ATL07
surface classification – a further 60 % improvement above the
ATL07-based LIF is possible, to a “best” bias of just 1.0 %,
in these imagery. This “best” bias is determined by the cor-
relation between IS2 ground tracks and the crack features of
the sea ice. Although there may be a general correlation be-
tween lead geometries and IS2 ground tracks, we show in
Horvat et al. (2025) that the expected value of this bias in
the Arctic is effectively zero. Therefore, the difference be-
tween the “best” and the “ATL07” scenario indicates some
error in either the drift correction or the ATL07 classification.
Regardless, it is clear that improvements in ATL07 classifi-
cation could lead to an IS2-based SIC product that improves
substantially upon the error characteristics of PM-SIC data
in high-concentration ice regimes.

An important consideration when comparing SIC esti-
mates across different sensors is the definition of what con-

stitutes “ice.” Thin ice emits microwave radiation at inter-
mediate levels between open water and thick, snow-covered
ice, making it difficult to distinguish using standard PM SIC
retrieval algorithms (Comiso and Sullivan, 1986). In high-
resolution imagery, new ice is often visually distinct: it ap-
pears darker than first-year or multi-year ice, significantly
brighter than open water, and with a near-infrared reflectance
higher than that of melt ponds. These spectral and brightness
differences make it relatively straightforward to develop al-
gorithms that distinguish new ice from other surface types.
While thin ice is generally classified as ice in ICESat-2 data
(Fig. 4), the radiometric properties of thin and thick ice re-
main challenging to distinguish. While this study finds that
passive microwave products generally overestimate SIC, the
potential underestimation caused by misclassifying thin ice
as open water is offset by the overestimation resulting from
the inability of coarse-resolution sensors to resolve narrow
leads. These opposing biases can obscure the true impact of
thin ice on SIC retrievals.
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5 Conclusions

In this study, we evaluated the skill of commonly used PM-
SIC algorithms in representing local sea ice concentration,
compared to high-resolution optical imagery from Operation
IceBridge, optical satellite sensors, and an estimate of sea
ice concentration from individual passes of the IS2 laser al-
timeter. We showed that, in general, PM-SIC measurements
have positive biases in winter conditions over compact sea
ice, consistent with the existing literature (e.g., Kern et al.,
2019). During the summer, we observe that all PM prod-
ucts exhibit a positive median bias, with the exception of the
NASA Team algorithm. There is also a greater median bias
and a wider spread between the 25th and 75th percentiles in
the summer. In both winter and summer, the 25th to 75th per-
centile range includes both negative and positive values for
the NASA Team, OSI SAF, and ASMR-ASI products, while
the NSIDC CDR, BT, and AMSR-NT product biases are
all positive from the 25th to 75th percentile. These findings
are generally consistent with previous PM studies including
comparisons with MODIS (Kern et al., 2020), Landsat Kern
et al. (2022), and ship-based observations (Kern et al., 2019).
However, the OIB-based comparisons in this study reveal
generally smaller absolute biases and provide new insights
into how PM SIC may not capture the smallest-scale sea ice
features seen in high-resolution imagery. We also find that
the passive microwave bias is related to the melt pond frac-
tion. The mechanisms of these biases can be a result of al-
gorithm and sensor limitations. While a precise algorithmic
and sensor comparison is not within the scope of this study,
it invites future work to understand why, on these subsets of
data, there is such a systematic difference.

This study also examines the ability of the IS2 laser altime-
ter to estimate sea ice concentration. We provided four exam-
ples where IS2 passes are coincident with high-resolution im-
agery. We validated the surface-type classification parameter
in IS2’s sea ice height product, ATL07, against the classified
imagery and found good agreement. The single-pass linear
ice fraction (LIF) from ATL07 was on average 1.4 % greater
than the true along-track sea ice concentration and 2.4 %
greater than the two-dimensional image sea ice concentra-
tion. In these four cases, the LIF is more representative of
the high-resolution image scene than all passive microwave
products on this date and location. For near-100 % sea ice,
the IS2 altimeter can produce comparable or improved esti-
mates of SIC even for a single overflight of a sea-ice-covered
area. We acknowledge that the LIF is a derived product and
thus dependent on the accuracy of the ICESat-2 surface-type
classification and, with improvements to the ATL07 surface
classification scheme, has room to reduce open-water biases
significantly.

This paper highlights the limitations and uncertainties in
the passive microwave sea ice concentration products and
presents a promising new method for estimating ice concen-
tration and lead fraction, especially in areas of high sea ice
concentration with narrow leads. In the second part of this
paper (Horvat, 2024) we develop an LIF emulator that sam-
ples optical imagery at the frequency and direction of IS2
to understand the limitations of a one-dimensional product.
We find the minimum number of IS2 passes for an accurate
estimation of SIC in a range of ice conditions and build a
monthly LIF product that has error that is similar to or better
than PM data compared to classified imagery. Together we
demonstrate how ICESat-2 may be used to determine sea ice
concentration and lead fraction at high resolution.
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Appendix A: Alternative sampling method

Figure A1. Differences between passive microwave SIC retrievals and Operation IceBridge SIC (1 SIC (%)) with alternative sampling
method for winter scenes (a) and summer scenes (b). Same as in Fig. 2, but individual OIB SIC is compared with the PM grid cell value in
which that image falls. 1 SIC is given as the PM product less the OIB SIC value, where values > 0 indicate the PM SIC product is greater
than imagery-derived SIC. Distribution of SIC biases for winter scenes where OIB SIC≤ 99 %. Each box plot shows the interquartile range
(IQR), which is the 25th percentile to 75th percentile. The line inside the box plot represents the median. The whiskers show the range which
is defined here as 1.5 times the IQR.
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