Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4585-2025
https://doi.org/10.5194/tc-19-4585-2025
Research article
 | 
16 Oct 2025
Research article |  | 16 Oct 2025

UAV LiDAR surveys and machine learning improve snow depth and water equivalent estimates in boreal landscapes

Maiju Ylönen, Hannu Marttila, Joschka Geissler, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, and Pertti Ala-Aho

Related authors

Plant community composition explains spatial variation in year-round methane fluxes in a boreal rich fen
Eeva Järvi-Laturi, Teemu Tahvanainen, Eero Koskinen, Efrén López-Blanco, Juho Lämsä, Hannu Marttila, Mikhail Mastepanov, Riku Paavola, Maria Väisänen, and Torben R. Christensen
Biogeosciences, 22, 6343–6367, https://doi.org/10.5194/bg-22-6343-2025,https://doi.org/10.5194/bg-22-6343-2025, 2025
Short summary
Comparing high-resolution snow mapping approaches in palsa mires: UAS lidar vs. modelling
Alexander Störmer, Timo Kumpula, Miguel Villoslada, Pasi Korpelainen, Henning Schumacher, and Benjamin Burkhard
The Cryosphere, 19, 3949–3970, https://doi.org/10.5194/tc-19-3949-2025,https://doi.org/10.5194/tc-19-3949-2025, 2025
Short summary
Isotopic Stratification and Non-Equilibrium Processes in a Sub-Arctic Snowpack
Shaakir Shabir Dar, Eric Klein, Pertti Ala-aho, Hannu Marttila, Sonja Wahl, and Jeffrey Welker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2724,https://doi.org/10.5194/egusphere-2025-2724, 2025
Short summary
External and internal drivers behind the formation, vegetation succession, and carbon balance of a subarctic fen margin
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
Biogeosciences, 22, 3047–3071, https://doi.org/10.5194/bg-22-3047-2025,https://doi.org/10.5194/bg-22-3047-2025, 2025
Short summary
Snowmelt-mediated isotopic homogenization of shallow till soil
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024,https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary

Cited articles

Aakala, T., Hari, P., Dengel, S., Newberry, S. L., Mizunuma, T., and Grace, J.: A prominent stepwise advance of the tree line in north-east Finland, J. Ecol., 102, 1582–1591, https://doi.org/10.1111/1365-2745.12308, 2014. 
Adams, M. S., Bühler, Y., and Fromm, R.: Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain, Pure Appl. Geophys., 175, 3303–3324, https://doi.org/10.1007/s00024-017-1748-y, 2018. 
Ahmed, M., Seraj, R., and Islam, S. M. S.: The k-means Algorithm: A Comprehensive Survey and Performance Evaluation, Electronics (Basel), 9, 1295, https://doi.org/10.3390/electronics9081295, 2020. 
Ala-Aho, P., Autio, A., Bhattacharjee, J., Isokangas, E., Kujala, K., Marttila, H., Menberu, M., Meriö, L.-J., Postila, H., Rauhala, A., Ronkanen, A.-K., Rossi, P. M., Saari, M., Haghighi, A. T., and Kløve, B.: What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review, Environ. Res. Lett., 16, 043008, https://doi.org/10.1088/1748-9326/abe82c, 2021. 
Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, https://doi.org/10.1016/J.ADVWATRES.2012.12.009, 2013. 
Download
Short summary
We collected snow depth maps four times during the winter from two different sites and used them as input for a model to predict daily snow depth and snow water equivalent (SWE). Our results show similar snow depth patterns at different sites, with snow depths being the highest in forests and forest gaps and the lowest in open areas. The results can extend operational snow course measurements and their temporal and spatial coverage, helping hydrological forecasting and water resource management.
Share