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Abstract. Climate change is rapidly altering snow conditions
worldwide, and northern regions are experiencing particu-
larly significant impacts. As these regions are experiencing
faster warming than the global average, understanding snow
distribution and its properties at both global and local scales
is critical for effective water resource management and envi-
ronmental protection. While satellite data and point measure-
ments provide valuable information for snow research and
models, they are often insufficient for capturing local-scale
variability. To address this gap, we integrated UAV LiDAR
with daily reference measurements, snow course measure-
ments, and a machine learning (ML) approach. Using ML
clustering, we generated high-resolution (1 m) snow depth
and snow water equivalent (SWE) maps for two study ar-
eas in northern Finland. Data were collected through four
different field campaigns during the 2023-2024 winter sea-
son. The results indicate that snow distribution in the study
areas can be classified into three categories based on land
cover: forested areas, transition zones with bushes, and open
areas (namely peatlands), each showing different snow ac-
cumulation and ablation dynamics. Cluster-based modelled
SWE values for the snow courses gave good overall accu-
racy, with RMSE values of 31-36 mm. Compared to snow
course measurements, the cluster-based model approach en-
hances the spatial and temporal coverage of continuous SWE
estimates, offering valuable insights into local snow patterns
at the different sites. Our study highlights the influence of
forests and forest gaps on snow accumulation and melt pro-
cesses, emphasizing their role in shaping snow distribution
patterns across different landscape types in the Arctic boreal

zone. The results improve boreal snow monitoring and water
resource management, offer new tools and high-resolution
spatiotemporal data for local stakeholders working with hy-
drological forecasting and climate adaptation, and support
satellite-based observations.

1 Introduction

Snow is an important part of the hydrological cycle and is
highly relevant to societies and ecosystems, especially in
high latitudes and mountainous regions. Snow cover, timing,
and distribution directly influence the climate energy bud-
get through snow albedo (Callaghan et al., 2011; Li et al.,
2018); ecosystems and habitats, including species and vege-
tation distribution (Thiebault and Young, 2020); and biogeo-
chemical processes in soils and seasonal ground frost (Ala-
Aho et al., 2021; Croghan et al., 2023; Jan and Painter, 2020).
Additionally, snow resources have a major impact on catch-
ment, river, and groundwater budgets and seasonal distribu-
tion (Merié et al., 2019). Snow-covered areas are decreas-
ing as global temperatures rise, leading to a consistent de-
cline in snow water equivalent (SWE) (Colombo et al., 2022;
Faquseh and Grossi, 2024; Kunkel et al., 2016; Réisédnen,
2023; Zhang and Ma, 2018). A recent study by Gottlieb and
Mankin (2024) shows how March SWE has decreased in
half of the Northern Hemisphere river basins over the past
40 years, with the highest decreases in the southwestern USA
and western, central, and northern Europe. The timing and
amount of snowmelt, along with SWE in the melting period,
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are crucial for local water balance and flood monitoring and
regulation (Bavay et al., 2013; Callaghan et al., 2011; Wang
et al., 2016). Changes in snow conditions and rising tempera-
tures are causing earlier flood peaks in snowmelt-dominated
catchments, with a decline in streamflow later in the year
(Berghuijs and Hale, 2025; Engelhardt et al., 2014; Matti
et al., 2017). Snowmelt significantly influences near-surface
hydrological effects (Mubhic et al., 2023) and soil moisture in
these regions (Okkonen et al., 2017).

Snow models are an important part of water resource plan-
ning and prediction. These models provide estimations of
snow-related hydrological parameters for areas and times
where ground observations are not available and can be
used for creating various scenarios. However, for the accu-
rate prediction of snow water resources, snow models re-
quire high-resolution data as inputs and for testing and vali-
dation. Satellite-based remote sensing is still a rather coarse
tool and has limited accuracy with canopy cover (Muhuri et
al., 2021; Rittger et al., 2020). For example, currently, the
accuracy and spatiotemporal availability of SWE from mi-
crowave satellite missions are not sufficient for local-scale
water resource management planning (Tsang et al., 2022).
Gaffey and Bhardwaj (2020) conclude that as only a few
satellite sensors provide the resolution required to capture
local variability with multispectral or infrared data, together
with limited revisiting times, the usage of satellite products
in snow research is still limited. Thus, ground-based manual
measurements, which are then fed into operational models,
are still conducted. The national snow course measurement
network — a manual snow depth and density measurement
protocol — provides important data for models and serves
as a long-term historical dataset; however, gathering data is
time-consuming, the accuracy varies (Beaudoin-Galaise and
Jutras, 2022; Kuusisto, 1984; Mustonen, 1965), and the tem-
poral resolution is weeks to 1 month. Thus, it is not ideal
for capturing the snow dynamics of individual events or im-
portant hydrological variables such as peak snow depth or
melt-out dates (Malek et al., 2020).

To bridge the knowledge and technical gap between re-
motely sensed and ground observations, uncrewed aerial ve-
hicles (UAVs) have been proven to be efficient in snow
depth and SWE estimations, providing decent cost efficiency
and accuracy (Adams et al., 2018; Niedzielski et al., 2018;
Rauhala et al., 2023). Like satellite platforms, UAV sys-
tems can carry both optical and radar-based sensors and
provide high-resolution spatial information. Photogramme-
try, including multispectral and stereo-imagery, can result
in centimetre-scale accuracy in snow depth mapping over
a catchment scale and is relatively low cost compared to
radars like ground-penetrating radar (GPR) and light de-
tection and ranging (LiDAR) (Maier et al., 2022; Nolan
et al., 2015; Rauhala et al., 2023). Combining snow depth
data from LiDAR and spectrometer sensors has also been
used to model snow density on a weekly basis at the Air-
borne Snow Observatory (ASO) (Painter et al., 2016). Yet,
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photogrammetry-based products, like structure-from-motion
(StM), require suitable light conditions and heterogeneous
snow surfaces and are limited in penetrating dense vegetation
cover. Thus, the decision between cost-effectiveness and ac-
curacy is dependent on the site characteristics (Rauhala et al.,
2023; Rogers et al., 2020). Recently, LiDAR sensors have be-
come more affordable, compact, and lightweight. Technical
advancements, such as improved inertial measurement units
(IMUs) and global navigation satellite systems (GNSSs),
have enhanced their accuracy and performance, making Li-
DAR more cost-effective and competitive compared to UAV
photogrammetry (Bhardwaj et al., 2016; Rogers et al., 2020).
UAV LiDAR technology potentially offers high accuracy
over large spatial areas and allows catchment-scale mapping
even under canopy cover, unaffected by overcast conditions
or shadows (Dharmadasa et al., 2022; Harder et al., 2020; Ja-
cobs et al., 2021; Mazzotti et al., 2019). LiDAR-based snow
depth data, when combined with models or density assump-
tions, can also be used to estimate the spatial distribution
of SWE on a landscape scale, with decent cost-effectiveness
(Broxton et al., 2019; Geissler et al., 2023).

Snow conditions are mostly controlled by temperature and
precipitation (Mudryk et al., 2020; Mudryk et al., 2017), and
changes in global and local climate trends impact snow cover
differently across regions. However, local snow accumula-
tion is dependent on on-site characteristics, such as topog-
raphy, vegetation, weather, and wind patterns (Currier and
Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest struc-
ture significantly affects snow accumulation (Mazzotti et al.,
2023), and SWE values for forested areas appear signifi-
cantly higher than in tundra and shrub tundra zones (Busseau
et al., 2017; Dharmadasa et al., 2023). The effect of the for-
est canopy on snowmelt also depends on the climate because,
in cold regions, the snow lasts longer in forests, whereas in
warm climates, it stays longer in forest openings (Lundquist
et al., 2013). Additionally, snowpack characteristics are spa-
tially different in forest gaps (Bouchard et al., 2022) and on
forest edges (Currier et al., 2022; Mazzotti et al., 2019). Veg-
etation changes, such as the northward retreat of the treeline,
the densification of existing vegetation, and the migration of
new species towards the poles, will also affect snow dynam-
ics; these effects are not yet fully known (Aakala et al., 2014;
Franke et al., 2017; Grace et al., 2002; Ropars and Boudreau,
2012). To enhance our understanding of snow processes in
sub-arctic and boreal regions, we need improved tools and
approaches, especially with localized high-resolution spatial
data.

Even though annual changes in snow cover are dominated
by weather conditions, different patterns of snow distribution
and melting can be detected (Currier et al., 2022; Geissler et
al., 2023; Matiu et al., 2021). These snow distribution pat-
terns are site-specific and are dictated by local site charac-
teristics, and, importantly, they can be extended to different
years (Pflug and Lundquist, 2020; Sturm and Wagner, 2010).
Yet, the approach of Pflug and Lundquist (2020) would re-
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quire several years of snow depth maps from the regions,
which is not always feasible. Revuelto et al. (2020) success-
fully modelled daily snow depth maps using in situ measure-
ments and time-lapse photographs, and field data collected
from two winters were estimated to be enough for the random
forest model to estimate snow depth for other years. Repet-
itive UAV surveys over winter seasons can provide spatial
information on snow cover, helping in the identification of
factors affecting snow distribution. Different machine learn-
ing approaches have shown promising results in snow depth
and SWE mapping for different regions (Zhang et al., 2021),
as they can reduce biases and enhance overall accuracy (King
et al., 2020; Vafakhah et al., 2022). ClustSnow, a machine
learning (ML) framework based on k-means and random for-
est clustering, first presented in Geissler et al. (2023), allows
the determination of snow patterns (referred to as clusters)
from repetitive spatial snow depth maps only. These clusters
can not only characterize areas with similar seasonal snow
dynamics, but also serve as a temporally persistent extrapo-
lation basis (Geissler et al., 2025) for local field observations
or sensor measurements, enabling the creation of daily spa-
tial snow depth and SWE maps of entire winter seasons with
accuracies in the same magnitudes as those of the underlying
data or modern snow models. However, ClustSnow requires a
network of sensors that is not feasible for many sites and has
to date only been tested on very small sites (0.22 km?) within
central Europe (Geissler et al., 2023). So far, the ClustSnow
framework has, however, not been tested within sub-arctic
and boreal regions.

Our study produces daily spatial snow depth and SWE es-
timates at different sites based on a combination of LiDAR-
based snow depth maps, snow course measurements, and
continuous snow depth measurements. The field data were
collected during winter 2023-2024 from two different sites
in Finnish Lapland, each with long-term monitoring infras-
tructure and existing snow course measurements, represent-
ing different vegetational and topographical conditions typ-
ical of boreal and sub-arctic landscapes. The study applies
the ClustSnow workflow (Geissler et al., 2023, 2025), a ML
model based on spatially similar snow depth zones, to novel
data and regions with different climatic and environmental
conditions. To our knowledge, this method has not yet been
used in boreal and sub-arctic areas but has proven to be a
promising approach in Alpine conditions. In comparison to
the original study by Geissler et al. (2023), this study applies
the model with fewer ultrasonic sensors and LiDAR surveys,
with a new climate, and with larger study areas. We also ex-
amine the ability of the UAV LiDAR to map snow depth in
forested boreal and sub-arctic areas in northern Finland and
discuss how machine-learning-derived snow depth clusters
and properties could be used to improve SWE estimates in
our study areas with considerably better spatial and temporal
resolution compared to traditional operational snow course
measurements.
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2 Data and methods
2.1 Study areas

Two study areas were chosen to present different environ-
mental conditions for Finnish Lapland and sub-arctic and bo-
real zones, namely Pallas (Fig. 1a) and Sodankyla (Fig. 1b).
Both sites have ongoing snow course measurements operated
by the Finnish Environment Institute (SYKE) and at least
one ultrasonic snow depth sensor together with a weather sta-
tion operated by the Finnish Meteorological institute (FMI).
Data collected by SYKE and FMI are publicly available
(Sect. 2.2.4).

Pallas (67°59’'N, 24°14'E) is the northernmost of the
study sites and is located the highest from sea level. The
land cover is mostly coniferous forests (63 %), with mires
and mixed forests (Table 1). It has higher average snow
depths compared to Sodankyld. Sodankyli is located in the
middle part of Lapland (67°21’ N, 26°37E), the land cover
is mainly mire (63 %), and the elevation range is low (Ta-
ble 1). The Sodankyli site is part of the FMI research station,
which has weather observations starting from 1908 (Finnish
Meteorological Institute (s. a.), Avoin data — Sddhavaintojen
vuorokausi- ja kuukausiarvot, https://www.ilmatieteenlaitos.
fi/avoin-data-saahavaintojen-vrk-ja-kk-arvot, last access: 2
October 2025).

2.2 Field measurements

In our field campaigns, one snow-off and four snow-on Li-
DAR surveys were conducted at both sites during the winter
of 2023-2024. Snow-on campaigns were carried out at the
beginning of January, the end of March, the end of April,
and the beginning of May, whereas the snow-off campaigns
were conducted on 30 May for Sodankyld and 7 June for Pal-
las, just after snowmelt and before the new vegetation growth
season. The aim was to capture the snowpack in its different
winter stages — (i) new snowpack, (ii) maximum snowpack,
and (iii) late melting snowpack — to distinguish areas in each
site with similar snow patterns and variability (Fig. 2). Dur-
ing winter 2023-2024, the snow depths were above the av-
erage in Pallas and Sodankyld. At both sites, snow ablation
started in March 2024, interrupted by some major snowfall
events in April 2024 (see Fig. S4 in the Supplement).

2.2.1 UAV LiDAR surveys

UAV LiDAR mapping was performed at Sodankyld and
Pallas using YellowScan Mapper+ (YellowScan, France),
equipped with an Applanix APX-15 inertial measurement
unit and mounted on a DJI Matrice 300 RTK (DJI, Shen-
zhen, China). The scanner operated with a 70.4° scanning
angle and a 240kHz pulse repetition frequency, with both
sites scanned at a cruising speed of 7ms™!, at an altitude of
80 m above ground level, and with a 70 % overlap between
flight lines (Table S1 in the Supplement). Trajectory correc-
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Table 1. Meteorological and landscape characteristics for Pallas and Sodankyla.

M. Ylonen et al.: UAV LiDAR surveys and ML improve snow depth and water equivalent estimates

Pallas  Sodankyld  Data source
Elevation range (m) 267-350 178-183 NLS
Mean annual air temperature (°C) 2008-2024 0.5 09 FMI
Mean annual total precipitation (mm) 2008-2024 644 553  FEMI
Average snow depth Nov—May (cm) 2008-2024 65 48 FMI
Average winter wind direction Nov—Apr (°) 199 182  FMI
LiDAR extent (km?) 0.8 1.1
Land cover (%)
Deciduous 0.1 0.1 SYKE Corine land cover 2018
Coniferous 62.7 27.0
Mixed 149 3.7
Mire 17.2 62.7
Canopy closure < 30 % 35 4.1

Source: Finnish Meteorological Institute (FMI) (2025), Open data: Snow depth, average temperature, precipitation amount,

https://en.ilmatieteenlaitos.fi/download-observations, last access: 3 March 2025. Source: Syke (2018), Open data: Corine Land cover 2018 20m,
https://www.syke.fi/en/environmental-data/downloadable- spatial-datasets#corine-land-cover, last access: 3 June 2024, National Land Survey of
Finland (NLS) (2020).

e =

Snow course
A Reference sensor
Drone LiDAR survey area

Pallas

. So\dankylé

Russia

Figure 1. The location and maps of study sites (a) Sodankyléd and (b) Pallas. The grey area represents UAV flight areas, and the black points
mark the manual snow sampling locations of the snow courses. Orthophotos were obtained from the National Land Survey of Finland.

tion was carried out in Applanix POSPac software using con-
tinuously operating reference station (CORS) observations
from the National Land Survey of Finland CORS network
as the reference data. For more details on the LiDAR system
and flight parameters, see Table S1 in the Supplement.

We compared the accuracy of the digital terrain models
(DTMs) between different data processing methods, using
five GCPs (ground control points) as a reference. In Yel-
lowScan CloudStation, we tested two gridding strategies for
DTM generation — MinZ, which uses the minimum elevation
value within each grid cell, and MeanZ, which averages the
elevation of all ground points for each cell. We also com-
pared the accuracy of the DTMs between different data pro-
cessing methods, using 5 GCPs (ground control points) as
a reference. The 5 GCP plates were distributed across the
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study areas during each campaign and geolocated with RTK
GNSS devices, Emlid RS2+ (Hungary), or Trimble GNSS
system R12i (USA), which report 7-8 mm horizontal and
14-15mm vertical RTK accuracies. The best results were
obtained when processing the point clouds with the MinZ
method, which was therefore used for the determination of
DTMs from the point clouds.

2.2.2 Manual snow measurements

Manual snow depth and density measurements were con-
ducted within 6 h of the completion of the UAV campaigns.
Snow course measurements were carried out following the
SYKE snow survey protocol (Kuusisto, 1984; Mustonen,
1965; Kuusisto, 1984; Mustonen, 1965). Snow depth was
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Figure 2. Snow depths from each site’s FMI stations. Sodankyld (a), and Pallas (b). Dark dashed lines represent the UAV campaign dates
from the winter of 2023-2024. The red line represents the long-term average snow depth (2005-2024), and blue lines the daily snow depths

of this study’s winter season 2023-2024.

measured every 50 m and density every 200 m along the snow
course transect in Pallas (Fig. 1a). In Sodankyld, where the
snow course is longer (4km), SWE was measured at eight
different sites along the snow course. These measurement
locations were selected to represent different terrain types
present in the study site (Fig. 1b). Snow measurement points
were geolocated using RTK GNSS Emlid RS2+ (Hungary)
and Trimble GNSS system R12i (USA). In Pallas, snow
depth was measured using fixed poles installed in the field,
whereas in Sodankyld, measurements were taken manually
with a wooden snow probe at predefined GPS-marked lo-
cations. The data obtained were used as validation data for
modelled maps.

2.2.3 Automatic daily snow depth measurements

Sodankyli is equipped with three ultrasonic sensors (Camp-
bell Scientific SR50) providing daily snow depth record-
ings (Fig. 1b). The sensors are operated by FMI, and
the data are open access (https://litdb.fmi.fi/index.php,
last access: 5 March 2025). Sensors are in open peat-
land (67°22.024' N, 26°39.070'E), in pine forest openings
(67°21.706' N, 26°38.031'E), and inside sparse pine for-
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est (67°21.699' N, 26°38.051’ E). Pallas has one ultrasonic
sensor (Campbell Scientific SR50) providing daily snow
depth data. This sensor is located in Kenttirova (Fig. 1a)
and is also operated by FMI (https://en.ilmatieteenlaitos.fi/
download-observations, last access: 5 March 2025). The sen-
sor is located in the spruce forest in the upper part of the
study area (67°59.237'N, 24°14.579' E).

2.2.4 Associating manual snow course measurements
with automatic snow depth sensors

Manual snow depth measurements from snow courses were
linearly interpolated to estimate snow depths between mea-
surement dates. To improve the accuracy of these estimates,
the interpolated values were adjusted using daily snow depth
changes recorded by the in situ snow depth sensors (Fig. 1a,
b). At each snow course measurement point, the interpolated
snow depth was corrected by adding the daily change ob-
served at the representative snow depth sensor. Unlike Pallas,
where one reference sensor is available, Sodankylid has mul-
tiple ultrasonic snow depth sensors distributed across differ-
ent environments, allowing more representative corrections.
Each snow course measurement point is assigned to one of
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these environmental categories, ensuring that the most appro-
priate sensor was used for correction. If the corrected snow
depth estimate resulted in a negative value, it was set to zero.

2.3 Data analysis
2.3.1 LiDAR data processing

LiDAR data from each campaign were pre-processed using
CloudStation software. As part of this process, we performed
strip alignment of the flight lines to generate an accurately
georeferenced point cloud. To classify points belonging to
the ground, we applied the following parameters: steepness
(which reflects terrain variation) was set to 0.2, the minimum
object height (the vertical threshold above which an object
is not considered part of the ground) was set to 0.03 m, and
point cloud thickness was set to 0.15 m. Multiple combina-
tions of parameters — such as minimum object height and
slope tolerance — were tested and visually evaluated against
field observations and GCPs. The final configuration effec-
tively minimized misclassification and produced the most
accurate and realistic DTMs for our boreal study area. The
same parameter set was applied consistently across all cam-
paigns, including both bare-ground and snow-covered condi-
tions. Although snow accumulation can smooth terrain fea-
tures and influence classification (e.g. reducing local slope),
the selected settings yielded stable and reliable results across
all conditions.

Following classification, we generated DTMs with a 10 cm
spatial resolution. MinZ-method-based DTM showed better
correspondence with the GCP plates (Sect. 2.2.1) and was
used in the following analysis. The DTMs generated using
this method for the May campaign in Sodankyld showed
lower accuracy compared to those produced by other meth-
ods. Nevertheless, as the DTMs from the other campaigns
and sites were the most accurate when processed with Cloud-
Station, we chose to apply the same method consistently
across all sites and campaigns, accepting the reduced ac-
curacy for May. In addition, for each campaign, the point
cloud data show increments along the trajectory line borders
of approximately 1-5 cm. The uplifts are presumably due to
poorer georeferencing of points at the trajectory edges, and
presumably overlapping points from the two trajectories can
cause abnormal surfaces in DTMs. We tried to clean up the
data from overlapping points, but the overall accuracy of the
DTM was degraded, so we chose to accept the inaccuracies
in the UAV flight trajectory edge regions.

Further DTM processing was conducted using ArcGis
Pro 3.2.0. The snow depth rasters were generated by calcu-
lating the difference between the snow-on and the snow-off
DTMs and resampled to 1 m resolution. Snow depth values
falling outside a reasonable range (< —0.5m; > 2m) were
set to zero to remove extreme outliers, while minor negative
values close to zero were corrected to zero (—0.5 to Om).
Missing values were filled by calculating the median value
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from surrounding cells, using the median of the 5 x 5 neigh-
bouring cells. The data were clipped to the area of interest
(AOI), focusing the analysis on the buffer zone of 150 m
around the snow courses. The 4 DTMs were then stacked
together to be used as an input for the model (Sect. 2.3.2).

The error metrics were calculated using the 5 GCPs dis-
tributed in the study areas to compare their accuracy to
the derived DTMs following the suggestion of Rauhala et
al. (2023). To estimate the uncertainty in generated DTMs,
the difference between UAV DTMs and RTK-measured GCP
elevation (Az) was calculated following Eq. (1):

Az, = DTM;, — zgept, (D

where 7 is the date of survey, DTMy is the snow surface ele-
vation from the UAV survey, and zgcp is the GCP elevation
measured with RTK.

When the snow depth rasters were derived from two
DTMs, their precision was estimated following Eq. (2):

u=+/o(Az))*+ o(Azg)?, 2)

where o (Az; ) is the standard deviation for the difference be-
tween the UAV DTM and RTK-measured GCP elevation Az
for every winter campaign and o (Azg) is the standard de-
viation for the difference between the UAV DTM and RTK-
measured GCP elevation Az for the bare-ground campaign.

To estimate the trueness of the calculated snow depth
rasters, error propagation for the mean error of snow-on and
bare-ground DTMs was calculated. It is calculated by finding
the average of the differences between the UAV DTMs and
the GCP elevations, following Eq. (3):

m = (Azr) — n(Azg), 3)

where u (Az;) is the mean error for the difference between
each snow-on campaign’s DTMs and GCPs and u (Azg) is
the mean error for the difference between bare-ground cam-
paign DTMs and GCPs.

2.3.2 Application of ClustSnow to LiDAR datasets

We applied the ClustSnow workflow first presented in
Geissler et al. (2023) to our dataset. All analyses were per-
formed using R statistical software (v.4.3.0, R Core Team,
2023). To obtain clusters, ClustSnow applies the k-means
(Hartigan and Wong, 1979) and random forest (Breiman,
2001) algorithms to a stack of snow depth (SD) rasters. Con-
sequently, the obtained clusters only rely on multitemporal
snow observations and do not contain information on the
canopy or topography. As a first step, the k-means algorithm
groups a small subsample of cells based on their similarity of
observed snow depths into a user-defined number of clusters.
Secondly, these subsampled and clustered points are used to
train a random forest model that, as a last step, is used to pre-
dict the probabilities (w) of all grid cells (ij) belonging to the

https://doi.org/10.5194/tc-19-4585-2025



M. Ylonen et al.: UAV LiDAR surveys and ML improve snow depth and water equivalent estimates 4591

individual clusters (c¢). Hereafter, we refer to the ClustSnow
output as cluster probabilities (w;; ), and the map containing
the cluster numbers for each cell with the highest predicted
probability is referred to as the cluster map. Cluster numbers
are ordered based on the mean snow depth of the underlying
SD raster stack to allow easier interpretation and compara-
bility. Therefore, a cluster number of one is assigned to the
cluster with the highest mean snow depth, and the number-
ing increases with mean snow depth until the user-defined
number of clusters is reached.

2.3.3 Creating daily SD and SWE maps

Cluster probabilities at the snow course measurement loca-
tions (ij = s) (ws ) are assigned by normalizing so that they
sum to 1 in each cluster according to Eq. (4):

— wS‘C

e = Z(ws,c).

The synthetic daily snow depths for each cluster SD.(¢) are
calculated by multiplying the normalized probabilities by the
snow depth values of the corresponding snow course mea-
surements and summing them for each cluster according to
Eq. (5):

SD, (t) = Wy.. - SDs (2). 4)

“

The synthetic snow depth maps SD;;(t) are generated by
combining synthetic daily snow depth data (SD.(¢)) with
cluster probabilities w;; - and multiplying them with the time
series data of that cluster (SD.(#)) according to Eq. (6):
SDij (1) = Y (wij.c - SD(1)). (6)
c

The synthetic daily snow depth data for clusters were con-
verted into SWE using a semi-empiric A snow model
(Winkler et al., 2021). The model consists of four mod-
ules, namely new snow and overburden, dry compaction,
drenching, or scaling modules, and each module is acti-
vated depending on the change in snow depth between time
steps. The model has seven parameters to be calibrated, and
Fontrodona-Bach et al. (2023) suggested that two of them
are significantly related to the site-specific climate variables.
These two key parameters are the maximum density of a
snow layer (pmax) and new snow density (00). Only So-
dankyld has snow measurements allowing the determination
of p0. At other sites the model was run with the values of p0
and pmax provided by Fontrodona-Bach et al. (2023). The
rest of the seven parameters were kept as the default values
in Winkler et al. (2021).

The daily SWE maps SWE;;(#) are calculated using the
synthetic snow depth data SD.(¢) as an input for the model
and then using the same protocol as for SD maps to up-
scale the daily SWE estimates for the entire study area using
Eq. (7):

SWE;; (1) = ) _(Wij.c- SWEL(1)), (7)
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2.3.4 Model calibration and sensitivity

ClustSnow requires a set of parameters to be defined by
the user. Most of these parameters showed no sensitivity in
the calibration performed in Geissler et al. (2025). The only
and most sensitive parameter of ClustSnow is the number
of clusters (n_class) parameter. Different indices were tested
to guide this decision using the NbClust R package (v3.0.1;
Charrad et al., 2014). For Sodankyli and Pallas, these indices
suggested an optimal number between one and eight. Be-
sides these indices, we performed a full sensitivity analysis
of the ClustSnow workflow following Geissler et al. (2025).
Therefore, all model parameters are varied within reasonable
ranges and the model was run 1000 times with randomly cho-
sen parameter combinations. The snow products of all model
runs are evaluated against manual measurements to obtain
the mean and variance of different goodness-of-fit metrics
(RMSE, MAE, R). The results of the sensitivity analysis per-
formed are presented in Fig. S1 in the Supplement.

Based on these results, and the low sensitivities of
all parameters, parameter values suggested by Geissler et
al. (2023) were used, with the exception for the number of
clusters (n_class). For comparability and because of the rel-
atively low topographical variation in our sites, we selected
n_class to be three in this study for both sites. This number
is lower compared to the four clusters obtained in Geissler
et al. (2023, 2025) but allows an easier comparison with to-
pographic or vegetation. Yet, to allow a better discussion of
the effect of this key parameter on the results, we reran our
analysis with n_class set to the optimum of six, obtained in
the sensitivity analysis performed here for comparisons (see
Sect. 3.3.2).

3 Results

3.1 The accuracy of UAV-based LiDAR for mapping
snow depth in boreal and sub-arctic zones

At all study sites, the snow depth measured from snow
courses increased until March, after which it started to de-
crease due to spring melting (Table 2). Snow depth varia-
tion increased during the melting season, but in the April
and May campaigns, the variability stabilized as snow had
already melted in most areas. The uncertainty in the derived
DTMs was studied by comparing GCP points to the UAV
DTMs (Sect. 2.2.1). The difference between UAV LiDAR
snow depth maps and RTK-measured GCPs (Eq. 1) resulted
in varying accuracies between sites and campaigns, and their
RMSEs can be seen in Table 3. Weather conditions as well
as the accuracy of RTK signals might cause differences not
directly related to the UAV LiDAR.

Table 3 also summarizes the precision of snow depth maps
from standard deviations for each site calculated by Eq. (2).
The precision of the snow depth maps in Sodankyld was sta-
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Table 2. Mean snow depth and SWE values and their standard deviations from manual snow course measurements in different campaigns

and sites in winter 2023-2024.

Site Campaign Mean snow  Standard n Mean Standard n
depth (cm)  deviation SWE (mm) deviation
Pallas January 73.8 42 45 125.9 269 12
Pallas March 98.2 63 45 234.5 222 11
Pallas April 95.2 11.6 45 239.7 316 12
Pallas May 46.1 123 38 148.9 38.1 11
Sodankyld  January 54.0 58 81 90.6 11.8 10
Sodankyld  March 62.1 94 81 141.5 25.8 10
Sodankylda  April 46.5 19.3 68 137.9 53.7 6
Sodankyld ~ May 22.8 64 20 94.2 28.7 4

Table 3. The RMSE of the differences between GCP plates and
DTMs and the precision and trueness of snow depth maps derived
from DTMs in different campaigns and at different sites (Egs. 1, 2,
3).

Metrics Campaign Sodankyld Pallas
(cm)  (cm)

January 3.1 6.8

March 6.5 1.2

April 53 3.8

RMSE (Ba- D ypoy 28 7.1
June 24 5.1

All 11.2 53

January 6.6 8.8

March 4.5 4.7

Precision (Eq. 2)  April 39 6.1
May 20.8 6.3

Mean 8.8 6.5

January 2.7 33

March 5.1 32

Trueness (Eq. 3)  April 0.9 33
May 13.2 6.7

Mean 5.3 4.1

ble during the winter campaigns, performing best in April
(4.5 cm), but had an uncertainty of 20.8 cm in May. In Pal-
las the precision ranged from 4.7 cm in March to 8.8 cm in
January. The error propagation for mean error, meaning the
trueness of snow depth maps calculated by Eq. (3), is also
presented in Table 3. In Sodankyld, the trueness was the
best in April (0.9 cm), decreasing in May with values of up
to 13.2 cm, mostly caused by the computation of the DTM
with flooding of the mire areas. Pallas also had the high-
est trueness at the beginning of winter with relatively sta-
ble accuracies through the winter, ranging from 3.2-3.3 cm
in January—April and decreasing in May to 6.7 cm. During
the main melting season, localized open water and flooding
areas, especially in open peatland, cause laser beams to re-
flect differently in comparison to snow or ground surfaces,

The Cryosphere, 19, 4585-4610, 2025

which can lead to uncertainties, especially when using the
minimal-elevation-derived products. This can therefore af-
fect the quality of May DTMs, making them poorer in com-
parison to those of other months.

3.2 Cluster characteristics show similarities between
sites

The characteristics of clusters derived using ClustSnow and
their associated snow conditions at each site were analysed
by grouping snow course measurements and environmental
data according to their respective cluster classifications.

3.2.1 Cluster characteristics at Sodankyli

Cluster 1 covers 21 % of the total Sodankyld area, typically
located in forests or pine mires (Fig. 3). It has an average
canopy height of 4.6 m and is located typically less than 1 m
away from forests (Table 4). This cluster has the highest av-
erage modelled snow depth and SWE through the winter. Ac-
cording to the ClustSnow-derived snow products, peak snow
depth occurred on 14 March 2024 at 75 cm and peak SWE on
23 April 2024 at 164 mm (Table 4). The ablation started after
the peak, but snow depth increased again at the end of April
due to heavy-snowfall events, decreasing rapidly afterwards.
From snow course measurements, the points classified into
this cluster showed their snow depth peak on 26 March 2024,
with an average of 72.5cm snow depth (see Fig. S2 in the
Supplement). None of the 7 SWE measurement points of the
snow course were classified into this cluster (Fig. 3).

Cluster 2 is the most common, covering 45 % of the total
area, and is primarily located in the transition zone between
forest and open areas, including forest gaps, mire edges,
and forest—mire boundaries (Fig. 3). This cluster has a mean
canopy height of 4.7m and is on average 3m away from
cells classified as forests (Table 4). The modelled peak snow
depth occurred on 14 March 2024 (70 cm) and peak SWE on
23 April 2024 at 147 mm (Table 4). Snow course measure-
ments that are classified as cluster 2 have their snow depth
peaking on 15 March 2024, with an average of 67 cm, and

https://doi.org/10.5194/tc-19-4585-2025
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Figure 3. Sodankyli site cluster and vegetation characteristics. Bounding boxes A, B, and C are examples of different cluster zones in relation
to their canopy height and land cover.

Table 4. Cluster characteristics in relation to the entire study area of both sites.

Site Sodankyld | Pallas

Cluster 1 2 3] 1 23
Frequency (%) 21 45 34 32 42 26
Mineral soil (forests) (%) 29 25 6 78 58 55
Grove mire (korpi) (%) 3 2 1 2 4 2
Pine mire (rdme) (%) 49 19 5 17 18 9
Open mire (avosuo) (%) 20 54 87 3 20 33
Canopy height (m) mean 46 47 18| 43 62 15
Distance to forest (m) mean 1 3 14 1 2 75
Max modelled snow depth (cm) 75 70 59 | 111 106 103
Max modelled SWE (mm) 164 147 114 | 267 247 234

SWE peaking on 24 April 2024, with an average of 166 mm depth peaking on 14 March 2024 (59 cm) and 23 April 2024

(see Fig. S2 in the Supplement). (114 mm). The snow course snow depths and SWE from
Cluster 3 predominantly occurs in open areas with a low cluster 3 both peaked on 15 March 2024, with an average

canopy height, with 87 % of the area classified as open mire. snow depth of 57 cm and SWE of 138 mm.

This cluster consistently exhibits the lowest snow depths and

SWE values compared to the others (see Fig. S2 in the Sup- 3.2.2 Pallas snow depth and SWE clusters

plement). The highest modelled snow depth and SWE values

for cluster 3 are at the same time as for other clusters, snow In Pallas, the three clusters derived from snow depth maps

show similar characteristics to those in Sodankyla (Table 4).

https://doi.org/10.5194/tc-19-4585-2025 The Cryosphere, 19, 4585-4610, 2025



4594

The more common cluster, cluster 2, covers 42 % of the study
area, with cluster 1 covering 32 % and cluster 3, as the small-
est, covering 26 % of the area. The snow depth in the Pal-
las snow course began to decrease as early as late February
across all clusters (see Fig. S3 in the Supplement). This de-
cline was less pronounced in points classified as cluster 1
compared to the other two clusters. However, the timing of
peak SWE, marking the onset of snowmelt, was later in the
spring compared with snow depth and varied among the clus-
ters.

Cluster 1 is predominantly located in the forested areas,
which accounts for 78 % of the cluster, while the open ar-
eas cover only 3% (Table 4). The mean canopy height is
approximately 4.3 m, and the distance to the forest cells is
less than 1 m, which is less than in other groups, suggesting
smaller and denser forest types. Until January, the modelled
snow depths for cluster 1 followed similar snow depths to
the other clusters, but after February they surpassed those of
other clusters and remained the highest until the end of the
season (see Fig. S2 in the Supplement). Changes in the snow
depths between February and March were small, with oc-
casional fluctuations. The modelled snow depth of cluster 1
peaked on 28 March 2024 (111 cm), and the SWE peaked
on 10 May 2024 with SWE of 267 mm. Snow measurements
from the snow course show that points classified into this
cluster had their peaks in snow depth on 22 February 2024
and 25 April 2024, with both having an average snow depth
of 102 cm and SWE on 25 April 2024 of 265 mm.

Cluster 2, identified as a transition zone, is typically lo-
cated near forest edges, forest openings, and small-scale
open mire areas (Fig. 4). Forested areas cover 58 % of the
cluster, while open mire areas contribute 20 %. The mean
canopy height is approximately 6 m, with a 2.2 m distance
from the forest edges (Table 4). The snow depth patterns
for this cluster aligned with those of other clusters until late
February, after which the snow depths in cluster 2 started
to decrease. The modelled snow depth peaked in mid-March
on 18 March 2024 with 106cm and also on 17 Febru-
ary 2024 with 105 cm. The modelled SWE peaked later, on
28 April 2024 at 247 mm and on 10 May 2024 with a SWE of
248 mm. The results are similar to the manual snow course
measurements, where points classified into this cluster had
their snow depth peak on 22 February 2024 (101 cm). How-
ever, snow course SWE peaked twice, having an average of
227 mm on 27 March 2024 and 233 mm on 25 April 2024.

Cluster 3 covers 26 % of the Pallas area and is marked by a
mixture of forest (55 %) and open mire (33 %) environments
(Fig. 4). It has the greatest distance from forest cells and the
tallest mean canopy height of 7.5 m (Table 4). This cluster is
typically found in open mires or high-canopy forests. Mod-
elled snow depths in cluster 3 were initially the highest at
the start of the season but exhibited a lower rate of increase
compared to the other clusters after January and remained the
lowest throughout the rest of the season (see Fig. S3 in the
Supplement). The peak modelled snow depth, 103 cm, oc-
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curred in late February, on 17 February 2024, after which the
snow depth steadily declined. The modelled SWE peak was
at the same time as for cluster 2, on 28 April 2024 (237 mm).
Snow course snow depth measurements were the highest on
22 February 2024, with an average of 96 cm. SWE measure-
ments from the snow course within this cluster are limited,
with only five measurements taken during the melting period
in late April and early May. During this period, SWE val-
ues were initially low but peaked at 186 mm on 7 May 2024
(Fig. S3 in the Supplement).

3.2.3 UAV accuracy in comparison to clusters

To evaluate the accuracy of LiDAR UAV snow depth by
cluster in relation to the representativeness of reference
snow depth sensors, SD measurements taken during the
snow course were assigned to their representative cluster.
When comparing the UAV-based LiDAR SD maps and man-
ual snow course SD measurements, the LIDAR maps con-
sistently underestimate the snow course measurements in
both Pallas and Sodankyld (Fig. 5a, b). In Sodankyld, all
snow course measurement campaigns show similar corre-
spondence to the LiDAR snow depth maps and variations
among clusters are similar, showing consistent agreement
with snow course measurements (Fig. 5a). In Pallas the snow
course measurements classified as cluster 1 correspond the
best to the LiDAR snow depth maps, while the largest dis-
crepancies are observed in cluster 3, typically located in wet
mire areas (Fig. 5b). The accuracy of UAV LiDAR maps de-
creases towards the melting season, where, especially in Pal-
las, the SD estimates are on average 30 cm less than the snow
course measurements.

Snow course measurements and the UAV-based LiDAR
snow depth maps for each campaign were compared with
the reference snow depth sensor measurements of the study
area (Figs. 1, 2) to define the overall representativeness of the
measurements and clusters. In Sodankyl4, all the aforemen-
tioned datasets follow similar patterns: clusters had similar
mean snow depths to the sensors and were within the ranges
of snow course measurements (Fig. 6a), except in May, when
the snow course snow depths matched neither UAV LiDAR
nor the sensor snow depths. The largest snow depths were in
the forested cluster and from the reference sensor located in
the forest opening. In Pallas, the UAV LiDAR snow depth
maps underestimate the snow height in relation to both snow
course measurements and the reference snow measurement
(Fig. 6b). Cluster 1 has the highest correspondence to the
snow course and reference sensor compared to the areas clas-
sified as other clusters.

https://doi.org/10.5194/tc-19-4585-2025
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3.3 Model validation

3.3.1 Comparison of modelling results to snow course
data

The model creates daily snow depth and SWE estimates for
the two study sites. These estimates were compared to the
snow course measurements and UAV LiDAR snow depth
maps to estimate their accuracy (Table 5). The snow depth
predictions of modelled maps have an overall accuracy of
8.0cm in Sodankyld and 5.8 cm in Pallas compared to the
manual snow course measurements (Table 5). The SWE val-
ues differ from snow course measurements in Pallas, with
RMSE of 35.6 and 33.1 mm in Sodankyld during all mea-
surements in winter 2023-2024. The predicted SWE val-
ues of the Sodankyld snow course follow the observed snow
course SWE values (Fig. 7a). The model tends to slightly un-
derestimate the SWE, particularly during the late season, but
the median values of measurements fall within the model’s
predictive range. Model performance is the highest in Febru-
ary, with RMSE of 12mm (n = 7). In contrast, the perfor-
mance declines towards the end of the season, with RMSE
of 73 mm in May (n = 4), as can be seen in Table 5.

In Pallas, the modelled SWE values are typically within
the range of manual SWE measurement values (Fig. 7b). The
model has an overall accuracy of 32 mm (Table 5), with its
best performance observed early in the season, with RMSE
of 6 mm in November (n = 12) and 8 mm in December (n =
12), as shown in Table 5. The highest error, 59 mm (n = 12),
occurs during the onset of the rapid snowmelt in early May.
Despite this, the modelled SWE values successfully capture

The Cryosphere, 19, 4585-4610, 2025

the seasonal peak in April and May, consistent with the snow
course measurements.

ClustSnow-derived clusters therefore served as a valid ex-
trapolation basis for snow depth and SWE measurements
throughout the entire snow season 2023-2024. Previous ap-
plication of ClustSnow suggests that these clusters are not
only suited to extrapolating measurements of the same sea-
son as that of when the cluster’s underlying snow depth maps
were acquired, but also transferable to other snow seasons
(Geissler et al., 2025). Clusters defined by this study’s snow
dataset of 2023-2024 were therefore used to see how well the
model can reproduce previous years’ sSnow course measure-
ments. SWE measurements from previous years are available
for Pallas starting from 2021, although the number of mea-
surements varies across years. The results show that SWE
values from the winter 2022-2023 snow course are aligned
with model estimates, also capturing the peak SWE in late
April (Fig. 8b). The winter of 2021-2022 exhibits the great-
est variability in snow course SWE measurements, with the
model overestimating SWE for most of that winter. In other
winters, the model typically underestimates SWE relative
to snow course measurements. Additionally, the variance in
SWE values across clusters is largest during the winter of
2021-2022, reflecting greater variability in snow depth along
the snow course. However, the average of the SWE from the
snow course in winter 2021-2022 aligns with cluster 3, and
ClustSnow successfully captures the SWE peak at the begin-
ning of May 2022. The model generally captures the snow
course median SWE values from the manual measurements,
as well as the peak SWE values and their timing in previous
winters.
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Figure 7. Modelled SWE values in comparison to measured SWE values of the snow course in Sodankyld (a) and Pallas (b) in 2023-2024.

Table 5. RMSE for Sodankyld and Pallas modelled SWE.

Sodankyld ‘ Pallas

Date RMSE SD (cm) RMSE SWE (mm) ‘ Date RMSE SD (cm) RMSE SWE (mm)
15Nov 2023 6.3 (n =62) 15(n="7) 2 Nov 2023 4.5 (n =46) 18 (n=12)
15Dec 2023 59 (n=062) 13(mn="7) 16 Nov 2023 4.1 (n = 46) 6(n=12)
11 Jan 2024 4.6 (n =62) 16(n="17) 1 Dec 2023 3.9 (n = 46) 8(m=12)
16 Feb 2024 5.0 (n =62) 12(mn="17 14 Dec 2023 3.5 (n =46) 39(n=12)
15 Mar 2024 6.4 (n =62) 30n="7) 9 Jan 2024 4.1 (n =45) 25(n=12)
26 Mar 2024 6.7 (n =62) 32m="7) 22 Feb 2024 4.7 (n =45) 26 (n=12)
17 Apr 2024 9.2 (n = 60) 37 (n=06) 5 Mar 2024 5.2 (n = 46) 26 (n=12)
24 Apr2024  13.8 (n =62) 50 (n =6) 21 Mar 2024 5.5 (n = 46) 24 (n=12)
15 May 2024 9.7 (n =62) 73 (n=4) 27 Mar 2024 4.8 (n = 46) 34 n=11)
Mean 8.0 (n =555) 33.1 (n =58) ‘ 18 Apr2024 6.3 (n =45) 53 (n=12)

25 Apr2024 6.4 (n =45) 26 (n=12)

4 May 2024 6.7 (n = 46) 59 (n=12)

7 May 2024 6.3 (n = 46) 67 (n=12)

15 May 2024 8.1 (n =38) 25(n=11)

21 May 2024 9.3 (n = 46) 29 (n =3)

| Mean 58(n=677)  35.6(n=169)

3.3.2 Spatial accuracy of the model is influenced by
spring floods and snow wind distribution

Figure 9 visualizes the modelled snow depths for the March
campaign in Sodankyld, highlighting the influence of clus-

https://doi.org/10.5194/tc-19-4585-2025

tering on snow depth predictions. The modelled snow depths
align with the observed snow course measurements, but the
model struggles to accurately represent extreme high or low
values of snow depths captured by the UAV LiDAR. The
figure also demonstrates the effect of adding more clusters

The Cryosphere, 19, 4585-4610, 2025
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Figure 8. Modelled SWE of the previous winters, (a) 2023-2024, (b) 2022-2023, and (c¢) 2021-2022, at Pallas in comparison to the snow

course SWE measurements.

to the model. For example, 6 clusters would provide more
detailed snow depth estimates but would still miss the ac-
tual variability in the snow depths. The UAV LiDAR shows
the spatial variability in snow depth between snow course
measurement points, which is not captured during the snow
course measurement survey. To be able to evaluate the model
performance spatially, comparisons between modelled snow
depth maps and UAV LiDAR maps were conducted for each

The Cryosphere, 19, 4585-4610, 2025

of the campaigns. First, the difference between the UAV Li-
DAR SD map and the model SD output was derived (Figs. 10
and 11); the differences were then squared and averaged, and
the square root of the mean was calculated to obtain overall
RMSE for the campaign and model.

In Sodankyld, the analysis resulted in RMSEs varying
from 6.2 to 11.0 cm (January: 11.0 cm; March: 8.2 cm; April:
8.8cm; May: 6.2cm). The accuracy of the modelled snow
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depth maps is influenced more by the timing of the cam-
paign than by the specific location (Fig. 10). For instance, in
an open mire area located in the southeastern section of the
snow course, the model’s performance varies significantly,
with differences ranging from 10-15cm in March and de-
creasing to less than 5 cm in May (Fig. 10, dashed box). Sim-
ilarly, in the spruce-dominated forest situated in the south-
western part of the area, the highest accuracy is observed
in April (difference < 5cm), whereas in January, the model
predictions exhibit a larger discrepancy, with errors ranging
from 10-15cm.

In Pallas, the model has higher inaccuracies compared
to Sodankyld, with RMSEs varying from 18.7 to 24.7cm
(January: 22.4cm; March: 24.7cm; April: 22.7 cm; May:
18.7 cm). The model therefore performs best at the beginning
and at the end of the season. Spatially the model performs
best particularly at the southern end of the snow course, char-
acterized by homogeneous pine and mixed forest (Fig. 11). In
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contrast, the model has the highest errors in the broad Lom-
polonjénkd mire area in the northeast, where the snow is on
top of a flooding mire area, and on the northern slopes of the
bordering drumlins, where wind-driven snow accumulation
is common. In these areas, the model estimates differences
of over 30 cm from the UAV LiDAR map.

4 Discussion

4.1 Snow and ice conditions impacted UAV LiDAR
accuracy

UAV LiDAR mapping showed high accuracy at all study sites
and in all conditions, with the average RMSE of UAV Li-
DAR DTMs being 11.2 and 5.3 cm for Sodankyli and Pallas,
respectively. These results align with previous studies, which
have reported RMSE values from snow depth maps ranging
from 9 to 17 cm (Dharmadasa et al., 2022; Geissler et al.,
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Figure 10. Sodankyld model performance from different UAV LiDAR campaigns. The values define the absolute difference between LiDAR-

based snow depth maps and the modelled snow depth maps.

2023; Harder et al., 2020; Jacobs et al., 2021). However, our
larger uncertainty and lower accuracy were noted, especially
in the late melting period with flooding conditions, which
might be impacted by laser beam reflection from waterbod-
ies.

The trueness of the snow depth maps derived from DTM
maps varies between 0.9-13 cm, and RMSEs of individual
DTMs vary between 1 and 7 cm (excluding an outlier in So-
dankyld in May of 22.1 cm). The precisions here are based
on the 5 GCP measurements suggested by Dharmadasa et
al. (2022). Pallas has the most stable conditions, and So-
dankyld has the lowest bias in April (0.9 cm). The accu-
racy of the GCP location measurement itself can affect the
accuracy estimates. For example, one measurement in So-
dankyld (May) shows a significant difference from the DTM,
which decreases the overall accuracy of the site. The point
was not excluded from the calculations, as the error may
also be due to the DTM calculation errors from flooding
areas. The accuracy of UAV LiDAR snow depth mapping

The Cryosphere, 19, 4585-4610, 2025

is dependent on several factors, which can be divided into
boresight errors, navigational errors, terrain- and vegetation-
based errors, and post-processing errors (Deems et al., 2013;
Pilarska et al., 2016). For example, fallen tree trunks, very
dense undergrowth, or flooded marshes can pose challenges
to point cloud classification and affect the output DTM qual-
ity (Deems et al., 2013; Evans and Hudak, 2007). Similarly,
vegetation and terrain affect the accuracy of manual snow
depth measurements.

The best accuracy of snow depth maps (0.9cm) of all
sites and campaigns was calculated from the April cam-
paign in Sodankyld. Two days prior to the flight campaign,
on 24 April 2024, approximately 10cm of new snow had
fallen in the area, which helped to smooth the snow sur-
face and to cover previously melted or frozen areas under
the snow, positively affecting the LiDAR signal and hence
the accuracy of the terrain model. In contrast, the trueness
of snow depth maps in all sites is lowest in May (Table 3).
Our findings highlighted increased measurement inaccura-
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snow depth maps and the model output.

cies during that period, possibly because most of the snow
had already melted and large areas were covered with slush
and smooth water surfaces. This posed challenges for the
DTM algorithm’s lowest Z value obtained in the cell, mean-
ing that the height of the reflected laser beams in the water
mass also affects the DTM elevations. The trueness values,
on the other hand, are based on GCP plates placed in the area,
which were located on top of the remaining snow. When the
snow is surrounded by water, the model may be inaccurate
and produce lower-accuracy DTMs than when the surface
is completely covered by either snow or thawed ground. To
our knowledge, there is no systematic review on wet snow
affecting laser beams. However, water generally has a low
reflectivity in the infrared wavelength range compared to
solid surfaces, and the return signal detected by the sensor
is influenced by factors such as incidence angle and surface
roughness (Fernandez-Diaz et al., 2014; Paul et al., 2020).
These factors likely contributed to reduced accuracies of the
surface detection in areas with localized open water dur-
ing the melting season. The phenomenon can be seen espe-
cially in Sodankyld, which has the largest, typically flooding,
mire areas among sites. Results were similar for Rauhala et
al. (2023), where the poorest accuracy of SfM-method-based
DTMs occurred during the late melting period in flooding ar-

https://doi.org/10.5194/tc-19-4585-2025

eas. This is due to the manual snow course measurements,
with these flooding points marked as having zero snow depth
and LiDAR-derived snow depth maps still showing snow in
these areas. Some vegetation types, such as dense conifer-
ous forests, are known to decrease the accuracy of different
UAV methods of snow depth mapping (i.e. Dharmadasa et
al., 2022; Rauhala et al., 2023), as coniferous canopy reduces
or even prevents ground returns. If we expect cluster 1 to
present forested regions and cluster 3 to present open areas
with low vegetation and compare the snow depth map accu-
racies to snow course measurements, we cannot distinguish
similar phenomena in Sodankylé or Pallas (Fig. 5). At both
sites, the best correspondence between snow course measure-
ments and UAV LiDAR maps is in cluster 2, in forest open-
ings. In contrast, especially in Pallas, the biggest disparities
occurred in cluster 3. This may be due to snow course mea-
surement poles being lifted from the ground, especially in
wet areas where ground freezing and thawing move the pole
over time.

Broxton and van Leeuwen (2020) recommended the SfM
method for snow depth monitoring under certain conditions,
such as on gently sloping terrain and in areas without dense
forest cover. The UAV LiDAR method was selected over
the SfM method for this study due to existing dense forest
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canopy and frequent light conditions that would not allow
reliable SfM data acquisition (Rauhala et al., 2023; Revuelto
et al., 2021). With advancements in SfM camera technology,
the SfM method could complement LiDAR monitoring, par-
ticularly in relatively flat regions like Sodankyld and Pallas.
Nevertheless, challenges remain for both methods in large
mire areas. While the SfM struggles with surface homogene-
ity, LIDAR faces accuracy issues in detecting bare ground
under flooded, uneven, and wet surfaces. Additionally, man-
ual snow depth measurements are also less accurate due to
ice and water layers on the ground.

4.2 Site characteristics explaining the different snow
depth clusters

Vegetation and topography impacted snow depth clustering
in our boreal and sub-arctic sites. Specifically, we noted that
canopy cover, open peatlands, and transition zones with wind
shelter had a clear and similar influence on the clusters ob-
tained at both sites. Additionally, we noted that the clusters
have similar snow dynamics at both sites. The number of
clusters has a major impact on the performance of the clus-
tering and ClustSnow and how determined clusters relate to
the site’s vegetation and topography characteristics.

This study applied ClustSnow with the number of clus-
ters set to three, as initial tests demonstrated their suitability
for representing different snow patterns in study areas and
three clusters enable us to relate the snow depth patterns to
vegetational patterns. An equal number of clusters provides
a basis for site comparability between the two study sites.
Our analysis resulted in snow depth classification for forests
with different trunk heights (cluster 1); transition zones be-
tween forests and open areas, including forest edges and
gaps (cluster 2); and open areas (cluster 3), mainly peat-
lands. The results are consistent with those of Mazzotti et
al. (2023), who noted that snow accumulation patterns can
be classified into three groups, based on the relationship be-
tween canopy structure and ablation rate. However, as also
noted by Geissler et al. (2025), increasing the number of
clusters could, in some cases, improve the accuracy of the
end products, and increasing the number of clusters would
allow more detailed description of the snow patterns, as can
also be seen in Fig. 9. The sensitivity analysis performed
for this study’s sites confirms this assumption. We found
that the highest accuracies of the ClustSnow-derived snow
products, evaluated against manual measurements, can be ex-
pected with the number of clusters set to six. Especially when
the study area has high elevational differences or has vari-
ous topographical aspects, more clusters would better cor-
respond to the depth patterns. Most uncertainties related to
the model parametrization of both models, ClustSnow and
Asnow model, are due to the number of clusters (Fig. S1;
see the Supplement).

In forested areas, distinguishing between clusters 1 and 2
remains challenging due to their similar site characteristics
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(Tables 5 and 6). Forested areas present challenges for clus-
tering because of varying snow height and dynamics influ-
enced by canopy cover and trunk size (Merio et al., 2023).
Forest gaps in the coniferous forests are known to create
clear and distinct variations in snow depth within the forests,
and SWE varies up to 3 times more in unevenly distributed
forests compared to evenly distributed forests (Woods et al.,
2006). For this reason, forested areas contained both cluster 1
and cluster 2 at both sites. Cluster 1 receives the most snow
and has the highest SWE values, especially during the late
winter (Fig. 7a, b). Lundquist et al. (2013) concluded that
this is the typical situation in cold climates, where snow lasts
longer in forests than in forest openings. At both of our sites,
snowmelt starts latest and snow cover lasts longest in clus-
ter 1. The forested areas in Sodankyld and Pallas are spruce
dominated, where the canopy not only shades the ground
from sun radiation, reduces wind effects, and traps snow,
but also limits snowfall reaching the ground. In this clus-
ter, we expect snow accumulation to follow canopy structure
throughout the season and the ablation to be too slow or con-
stant to change it, as defined by Mazzotti et al. (2023).

Cluster 2 is the most common cluster at both sites (Ta-
bles 5 and 6), likely since it can be found in both forested
and open environments. While the snow depth trends across
cluster 1 and cluster 2 are similar, cluster 2 experiences an
earlier start of snowmelt in spring compared to cluster 1,
which is forested (Fig. 7a, b). This indicates more shortwave
solar radiation exposure compared to cluster 1, where SWE
peaks at the end of April before the melting begins. Cluster
2 characteristics correspond to previous studies, by Koutan-
tou et al. (2022) and Merid et al. (2023), where the canopy
structure influences snow accumulation but in ablation sub-
sequently disrupts these patterns, resulting in earlier timing
of snow loss. This can also be seen in the modelling outputs
from the previous two winters in Pallas (Fig. 8), especially in
winter 2022-2023, when snowmelt in cluster 2 started simul-
taneously with that in cluster 3. These characteristics are seen
at both sites and support the location of cluster 2 as being in
transition zones between open and forested areas.

Open areas are subject to wind redistribution and pro-
longed solar exposure, resulting in lower and smoother snow
depth patterns and corresponding to the results of cluster 3.
In cluster 3, snow depth starts decreasing notably earlier than
in other clusters, in February 2024, suggesting faster melt-
ing due to both higher solar radiation and flooding. In the
flooding mire areas, melting waters from below also accel-
erate snowmelt. Both snow depth and SWE values are lower
in this cluster in comparison to other clusters, correspond-
ing to results from Merio et al. (2023). An interesting aspect
of the classification is the differentiation between the mires
Lompolonjinki (Fig. 4, box A) and Vilisuo (Fig. 4, box B).
Vilisuo mire, classified as cluster 2, is more sheltered, is sur-
rounded by forests, and is located at a higher altitude than the
Lompolonjinkd mire, which is classified as cluster 3. Vilisuo
is drier and partly artificially drained, while Lompolonjianka
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is drained by a small natural stream, typically flooding in
spring (Marttila et al., 2021).

The clustering results support the results of other stud-
ies on snow distribution in boreal and sub-arctic sites. They
also support the ability of ClustSnow to model various en-
vironments and sites, in both the Alps and the Arctic boreal
zone. Moreover, the results suggest that ClustSnow is gener-
ally transferable to large sites as well as to the Arctic boreal
climate. In a recent study from the Pallas site by Merio et
al. (2023), the variations in snow depth were partially ex-
plained by canopy interception, longwave radiation emitted
by trees, and wind-driven redistribution, which contributed to
snow deposition along forest edges in both forested and peat-
land environments. The snow depth was higher within dense
canopy, with the greatest accumulation observed in conif-
erous forest areas, followed by mixed forests, transitional
forest—shrubland, and open peatlands. In both Sodankyla and
Pallas the dominant winter wind direction is from the south,
which leads to snow accumulation in forest canopies, espe-
cially on their leeward sides, where typically the largest snow
depths are measured, corresponding to the results from Dhar-
madasa et al. (2023). In Pallas this results in snow accumulat-
ing particularly behind the drumlins north of the Lompolon-
jankd mire (Fig. 4, box A). This is also reflected in the ac-
curacy of the model in these areas — the three clusters may
not be sufficient to account for the particularly large snow
depths of the northern sheltered slopes (Fig. 11). In compar-
ison, snow dynamics in Sodankylé are influenced by vege-
tation rather than by topographical variations, as the area it-
self is flat with elevation differences of less than 2m. For-
est structure is the main driver of snow accumulation, but
shortwave radiation can disrupt these patterns, especially on
south-facing slopes where there is expected to be more early-
season ablation (Mazzotti et al., 2023). Weather further af-
fects accumulation and ablation processes, leading to inter-
annual variations in snow distribution, explaining why the
relationship between snow distribution and canopy structure
varies by location and year.

k-means clustering is widely used in many applications
for partition datasets but is known to have problems associ-
ated with centroid initialization, handling outliers, and deal-
ing with various data types (Ahmed et al., 2020; Morissette
and Chartier, 2013). While more clusters might be able to
capture finer details, such as directional classes (Mazzotti
et al., 2019), the three clusters obtained in this study cor-
respond to land cover. These results align with previous find-
ings that emphasize the importance of canopy structure in
addition to topography and weather conditions for snow dy-
namics (Dharmadasa et al., 2023; Mazzotti et al., 2023). For
instance, Geissler et al. (2023) classified their Alpine study
area into four clusters, further subdividing the open cluster
into shaded and exposed clusters. Although using more than
three clusters could potentially improve finer-scale spatial ac-
curacy, as can be seen in Fig. 9, the number of clusters is
always a question of the data used and is left to the user to
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decide, as noted in the study by Geissler et al. (2023). Based
on our observations, together with the results of the study by
Geissler et al. (2025), we conclude that the number of clus-
ters is dependent on the landscape characteristics of the site
and the purpose of the model output. If the interest is to in-
vestigate the differences between snow dynamics in different
environments, we recommend increasing the cluster number
to also include shaded, exposed, and potentially different for-
est types to capture local variability (Currier and Lundquist,
2018; Fujihara et al., 2017; Mazzotti et al., 2020, 2023; Tru-
jillo et al., 2007). Our sensitivity analysis also showed im-
provements in the snow products with more clusters. In areas
with a larger variety of terrain types, such as diverse slopes
and orientations, more categories (4 to 6) could be justified.

4.3 LiDAR-based snow clustering and modelling
produce SWE estimates comparable to snow
surveys

The clustering derived from UAV LiDAR snow depth maps,
combined with the Asnow model, produced snow depth and
SWE estimates with RMSEs of §cm and 33.1 mm in So-
dankylid and of 5.8 cm and 35.6 mm in Pallas. The model can
reproduce the onset of snowmelt and peak SWE and, after
one season of drone surveys, needs only daily snow depth
measurements as input. The localization of model parame-
ters, especially pmax and p0, and the number of daily snow
depth reference data for the identified clusters improved the
results.

The results are consistent with a similar study by Geissler
et al. (2023), where the model errors were 8 cm for snow
depth and 35 mm for SWE in comparison to manual snow
measurements. Winkler et al. (2021), the creators of the pre-
sented Asnow model, produced a SWE RMSE value for their
entire validation dataset of about 30.8 mm, which is consis-
tent with other similar models and the results obtained in this
study. Multilayered thermodynamic one-dimensional mod-
els for SWE estimation, such as SNOWPACK, CROCUS,
and SNTHERM, obtained more accurate results in the Lan-
glois et al. (2009) study with an RMSE of 12.5-14.5 mm,
but these models also require atmospheric variables that are
not ubiquitously available. Studies with CROCUS have also
produced SWE estimate RMSE values on the same order of
magnitude as results in this study (Vionnet et al., 2012), with
an accuracy of 39.7 mm. Mortimer et al. (2020) studied the
long-term gridded SWE products and compared their results
to snow course measurements. None of the 9 tested products
were significantly better than the others; rather a multiprod-
uct combination provided the most accurate results. The low-
est RMSE in Finland was 33 mm, produced by ERAS. Thus,
depending on the region and winter climatic conditions, there
may be variability in the modelling results, and our UAV re-
sults are in typical measurement estimate ranges.

The RMSEs of the modelled snow depths (Table 5) in So-
dankyld are higher than in Pallas, likely due to several fac-
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tors. The RMSEs were calculated in comparison to man-
ual snow course measurements. In large mire areas, such as
those found in Sodankylid, the formation of ice layers at the
bottom of the snowpack may compromise the accuracy of
snow course measurements (Stuefer et al., 2020). Addition-
ally, the accuracy of snow depth maps in Sodankyld was re-
duced when parts of the areas were flooded in May (Table 3).
Also, normalizing snow depths when generating daily esti-
mates for clusters ensures internal consistency but reduces
local variability, leading to an underestimation of extreme
values. Even though the RMSE of the modelled snow depths
relative to snow course measurements in Pallas is lower than
in Sodankyld, the RMSEs calculated for the entire study area
are higher in Pallas. Specifically, RMSE values range from
18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm in So-
dankylad. One contributing factor to the higher RMSE in Pal-
las is the accuracy of the snow course measurements (Fig. 5).
The errors arise from the use of interpolated snow course
data as model input. These interpolations overestimate ac-
tual snow depths in Pallas (Fig. 6), introducing a system-
atic bias. This overestimation of snow course measurements
also partially explains the higher RMSE of the Pallas SWE
model compared to Sodankyld, even though the modelled
snow depth estimates for snow course were more accurate
(Table 5). In contrast, UAV LiDAR-derived snow depths for
the entire Sodankyld region closely align with snow course
measurements (Fig. 6), indicating better agreement between
manual measurements and broader regional snow depth esti-
mates in this area.

The ClustSnow model can detect SWE peaks in some
of the clusters (see Figs. S2 and S3 in the Supplement).
In Sodankyld, the SWE peak for cluster 2 aligns with the
snow course measurements recorded on the dates between
22 and 24 April 2024. The model estimates SWE for clus-
ter 3 to range between 107 and 114 mm from 14 March to
23 April 2024, and the snow course data for cluster 3 indi-
cate that SWE reaches its peak in mid-March before grad-
ually decreasing until the end of April, demonstrating good
agreement with model estimates. However, while the timing
of the peak is well captured, a slight discrepancy remains
in its magnitude. Due to the limited number of snow course
measurements classified within cluster 1, detecting mean-
ingful correlations for this cluster was not possible. In Pal-
las, the model estimates SWE peaks for clusters 1 and 2 on
10 May 2024, while for cluster 3, the peak is predicted to
occur earlier, on 28 April 2024. However, a slight tempo-
ral lag is observed as snow course measurements indicate
that for clusters 1 and 2 the SWE peaks on 25 April 2024.
For cluster 3, the discrepancy is more pronounced, with ob-
served SWE already peaking at the end of March. The results
show regional differences in SWE accumulation and melt dy-
namics, with the model capturing general trends but showing
slight timing offsets, particularly in Pallas.

The model was validated at the Pallas site to assess its
performance under different winter conditions from 2021 to
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2023 from which no data were used in developing the model
(Fig. 8). The results indicate that the model successfully cap-
tures both the peak SWE and its timing, despite variations in
winter conditions between different years. During the 2021-
2022 winter, the variance in both snow course SWE and mod-
elled SWE is notably higher compared to the other winters.
This increased variability is partly due to the fluctuating snow
depths in that season caused by both mid-winter melt events
and heavy-snowfall events.

Several studies predict an increase in mixed and liquid
precipitation in winter months in Finland and, particularly
in northern parts, increased solid precipitation and earlier
springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020).
Rain-on-snow (RoS) events are expected to increase in the
future for the northern Norway region during spring and sum-
mer (Mooney and Li, 2021; Pall et al., 2019), potentially
leading to an increase in such events in northern Finland too.
Such events increase the liquid water content of the snow-
pack, leading to rapid saturation and accelerated snowmelt
and reducing snow depth faster than natural snowmelt pro-
cesses (Yang et al., 2023). Even though Geissler et al. (2023)
noticed the Asnow model limited the capacity to map the
SWE change during RoS events, the SWE estimations of
this model add value to operational snow course measure-
ments by enabling continuous monitoring of changes be-
tween monthly observations. This capability is especially
valuable for capturing rapid changes during events such as
snow depth variations caused by melting or snowfall, where
these dynamics can be scaled across the entire study area
rather than relying on data from a single reference sensor.
By integrating daily estimates from local snow depth sensors
with snow course data and clusters, our approach enhances
event coverage in modelling. The model’s ability to capture
peak snow depth and melt-out dates in real time, provided
that reference snow depth sensors transmit data online, of-
fers essential data for hydrological observation networks and
improves the spatiotemporal resolution of snow course mea-
surements.

4.4 Practical aspects and suggestions for future studies

Snow monitoring data are essential for flood prediction, in-
frastructure management, forecasting hydropower produc-
tion, and recreational use such as skiing. The forecasts de-
rived from these data support river regulation and broader
water management practices. In addition, daily observations
are utilized by various stakeholders, including local busi-
nesses. These datasets also play a critical role in evaluat-
ing the impacts of climate change and informing the de-
velopment and implementation of adaptation strategies. In-
tegrating UAV-based snow depth surveys into established
snow course areas — conducted over at least one winter
season and preferably across multiple years — can signifi-
cantly enhance the spatial representation of snow depth es-
timates. By applying clustering techniques to these survey
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data within a region and validating the results against point-
based snow course measurements, it is possible to upscale lo-
calized measurements and improve the spatial and temporal
resolution of hydrological monitoring. This combination of
observation-based clustering and high-resolution UAV data
offers a promising approach for enhancing the monitoring
of snow cover dynamics at both site-specific and regional
scales. The outcomes of this study suggest that the applied
ClustSnow workflow is transferable and could be effectively
applied in other regions to support improved snow monitor-
ing and water resource management.

This study applied intensive UAV LiDAR campaigns to
capture detailed information on snowpack variability, includ-
ing in forested areas, which are known to reduce the spatial
coverage of the UAV-based SfM methodology (Broxton and
van Leeuwen, 2020), especially in poor lighting conditions
and under dense forest canopy cover (Rauhala et al., 2023;
Revuelto et al., 2021). Regardless of the sensor used, the
impact of winter conditions on the battery life of the drone
should be considered. The batteries of the DJI Matrice 300
RTK had to be replaced up to five times during the flight cam-
paign, especially in cold weather. Occasionally RTK cover-
age can also become a limiting factor in remote areas, for ex-
ample in Pallas in January, due to the temporary unavailabil-
ity of the VRS signal. However, especially in sparsely veg-
etated areas, the UAV SfM method could offer a more cost-
efficient method for producing 3D data on snow dynamics
and support the output of more expensive UAV LiDAR. UAV
data acquisition using LiDAR or SfM can also further sup-
port the spatiotemporal resolution of remote sensing prod-
ucts, as their usage in local-scale snow research is still lim-
ited due to spatial and temporal coverage issues (Muhuri et
al., 2021; Stillinger et al., 2023; Tsang et al., 2022). As noted
by Geissler et al. (2023), this method combines observations
and machine learning and can improve the spatial represen-
tation of hyper-resolution models (Mazzotti et al., 2021) or
advance refining sub-grid variability in larger-scale models
(Currier and Lundquist, 2018).

Mazzotti et al. (2023) indicated that the snow distribu-
tion patterns found at a specific location may not be con-
sistent from year to year, especially in changing weather
conditions. The snow distribution patterns are site-specific,
based on vegetational and topographical differences, and
some clusters might have different responses to different
weather conditions. Winters with abnormal snowfall cause
differences in snow extents and snow depth variability (Pflug
and Lundquist, 2020). In our study areas, the winter of 2023—
2024 was exceptional in terms of snow conditions. There
were melt periods in the middle of winter, and spring seemed
to arrive twice: first with a thaw in early April and then when
snow melted completely in May. On average, there was also
more snow than during a typical winter (Fig. 2), especially in
early winter. The model was developed based on these spe-
cific snow conditions, which means that winters with differ-
ent characteristics may not align with the model’s calculated
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clusters. This may partly explain, for example, the differ-
ences in SWE values for the winter of 2021-2022 (Fig. 8b).
This winter also showed the greatest variation in measured
SWE values, indicating larger homogeneity in snow con-
ditions during that winter. A follow-up year with different
weather conditions could enhance and verify the representa-
tiveness of the clusters and provide insights into interannual
variability, as local snow distribution patterns show recurrent
similarities (Sturm and Wagner, 2010).

Improvements in input data quality can enhance the ac-
curacy of the model, but the model also seems robust. For
example, improvements could be made to tackle Pallas site
snow course measurement errors (Table 5). We would recom-
mend a more comprehensive network of snow depth sensors
that could improve daily snow depth forecasts based on snow
course measurements, particularly in Pallas, where only lim-
ited data from the Kenttirova snow depth sensor are avail-
able. At least one reference sensor in each land cover type,
corresponding to a cluster, would improve the estimates. As
fresh snow density and maximum snow density are among
the most important parameters of the model (Fontrodona-
Bach et al., 2023), the model parameters should be localized
for each site, rather than relying on estimates based on the
literature. Additionally, as the greatest inaccuracies in snow
course measurements at Pallas were observed in mire areas,
it is important to acknowledge that these regions are prone
to greater errors in both manual and UAV-based snow depth
data collection. Beyond the influence of snow—forest inter-
actions, our results also emphasize the need to study snow
accumulation and melt processes in extensive peatland areas,
which are particularly prevalent in the Arctic boreal zone.

5 Conclusions

This work combines emerging methods in close-range
remote sensing and machine learning for high-spatial-
resolution and high-temporal-resolution estimates of snow
depth and SWE. The work is an important new application of
such methodology in the vast, yet relatively underexplored,
boreal and sub-arctic snow regimes. The study conducted ex-
tensive field campaigns at two well-established snow and hy-
drology research sites, Sodankyld and Pallas in Finnish La-
pland. The different sites represent different conditions, in
terms of both topography and weather conditions. The snow
depth maps from different areas and in different winter con-
ditions are the first from these study areas at a centimetre
scale of accuracy and allow an evaluation of the method in
relation to other snow depth and SWE products.

The ClustSnow workflow applied in this study has the po-
tential to be used in the expansion of the current operational
snow monitoring network to different sites. The resulting
SWE and snow depth maps can be produced in areas with
snow depth sensors in different terrain types or for a regularly
measured snow course with at least one snow depth sensor
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measuring daily. While the accuracy of the snow course mea-
surements must be considered, the existing snow courses pro-
vide a good basis for similar approaches for local-scale SWE
and snow depth mapping in other boreal sites too. Though
clusters formed here are based on only one winter and are
site-specific, we showed how they translate well into differ-
ent winters with different snow amounts at the sites. Founded
on the well-established consistency of local-scale snow dis-
tribution between years, the new technology applied in this
research enables cost-effective solutions for SWE monitoring
after one winter of UAV LiDAR surveys. Our work success-
fully extends the previous applications of similar methods to
boreal taiga snow, where forests greatly complicate any snow
monitoring, remote sensing, or modelling.

With climate change leading to increasing temperatures,
changes in precipitation regimes, and more frequent rain-on-
snow events, this methodology provides valuable tools for es-
timating rapid changes in snow depth and SWE at both local
and catchment scales. Such spatially and temporally refined
estimates of snowpack conditions are needed for catchment-
scale snow model validation and calibration, as well as to
improve resource planning and prediction.
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available at  https://github.com/jgenvironment/ClustSnow {#},
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