Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-3477-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-19-3477-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing vegetation effects on snow depth variability in Alaska's boreal forests with airborne lidar
Department of Civil, Geological and Environmental Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Svetlana L. Stuefer
Department of Civil, Geological and Environmental Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Scott D. Goddard
Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Christopher F. Larsen
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Related authors
No articles found.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025, https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
Cited articles
Alaska Fuel Model Guide Task Group: Fuel Model Guide to Alaska Vegetation, Unpubl. Report, Alaska Wildland Fire Coordinating Group, Fire Modeling and Analysis Committee, Fairbanks, AK, USA, https://fire.ak.blm.gov/content/admin/awfcg/C.%20Documents/Revised%20Alaska%20Fuel%20Model%20Guide%202018-05-22.pdf (last access: 15 April 2024), 2018.
Ashtiani, Z. and Deutsch, C. V.: Kriging with Constraints, Geostatistics Lessons, Geostatisticslessons.Com. 2024, https://geostatisticslessons.com/lessons/krigingconstraints, last access: 27 October 2024.
Askne, J. I. H., Soja, M. J., and Ulander, L. M. H.: Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model, Remote Sens. Environ., 196, 265–278, https://doi.org/10.1016/j.rse.2017.05.010, 2017.
Barnett, T., Malone, R., Pennell, W., Stammer, D., Semtner, B., and Washington, W.: The effects of climate change on water resources in the west: Introduction and overview, Climatic Change, 62, 1–11, https://doi.org/10.1023/B:CLIM.0000013695.21726.b8, 2004.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J. H., Mahoney, P. J., Kirchner, P. B., Bohrer, G., Brinkman, T. J., Cosgrove, C. L., Eitel, J. U. H., Hebblewhite, M., Kimball, J. S., Lapoint, S., Nolin, A. W., Pedersen, S. H., Prugh, L. R., Reinking, A. K., and Vierling, L. A.: Integrating snow science and wildlife ecology in Arctic-boreal North America, Environ. Res. Lett., 14, 010401, https://doi.org/10.1088/1748-9326/aaeec1, 2019.
Bolton, W. R., Hinzman, L., and Yoshikawa, K.: Water balance dynamics of three small catchments in a Sub-Arctic boreal forest, IAHS-AISH P., 290, 213–223, 2004.
Bonanza Creek LTER: Study Sites & Design: Caribou-Poker Creeks Research Watershed, https://www.lter.uaf.edu/research/study-sites-cpcrw, last access: 29 October 2024.
Bredthauer, S. R. and Hoch, D.: Drainage network analysis of a subarctic watershed, Caribou-Poker Creeks research watershed, interior Alaska, US Cold Regions Research and Engineering Laboratory Hanover, NH, Special Report, No. CRRELSR7919, https://apps.dtic.mil/sti/html/tr/ADA073595/ (last access: 12 February 2024), 1979.
Brown, R. D. and Goodison, B. E.: Interannual variability in reconstructed Canadian snow cover, 1915–1992, J. Climate, 9, 1299–1318, https://doi.org/10.1175/1520-0442(1996)009<1299:IVIRCS>2.0.CO;2, 1996.
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N. P., and Brooks, P. D.: Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8, 1073–1094, https://doi.org/10.1002/eco.1565, 2015.
Broxton, P. D., van Leeuwen, W. J. D., and Biederman, J. A.: Improving Snow Water Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements, Water Resour. Res., 55, 3739–3757, https://doi.org/10.1029/2018WR024146, 2019.
Campbell, M. J., Dennison, P. E., Hudak, A. T., Parham, L. M., and Butler, B. W.: Quantifying understory vegetation density using small-footprint airborne lidar, Remote Sens. Environ., 215, 330–342, https://doi.org/10.1016/j.rse.2018.06.023, 2018.
Carroll, S. S. and Cressie, N.: A comparison of geostatistical methodologies used to estimate snow water equivalent, Water Resour. Bull., 32, 267–278, https://doi.org/10.1111/j.1752-1688.1996.tb03450.x, 1996.
Chapin, F. S., Mcguire, A. D., Randerson, J., Pielke, R., Baldocchi, D., Hobbie, S. E., Roulet, N., Eugster, W., Kasischke, E., Rastetter, E. B., Zimov, S. A., and Running, S. W.: Arctic and boreal ecosystems of western North America as components of the climate system, Global Change Biol., 6, 211–223, https://doi.org/10.1046/j.1365-2486.2000.06022.x, 2000.
Chapin, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C. L., Tape, K. D., Thompson, C. D. C., and Welker, J. M.: Role of land-surface changes in arctic summer warming, Science, 310, 657–660, https://doi.org/10.1126/science.1117368, 2005.
Cho, E., Hunsaker, A. G., Jacobs, J. M., Palace, M., Sullivan, F. B., and Burakowski, E. A.: Maximum entropy modeling to identify physical drivers of shallow snowpack heterogeneity using unpiloted aerial system (UAS) lidar, J. Hydrol., 602, 126722, https://doi.org/10.1016/j.jhydrol.2021.126722, 2021.
Contreras, M. A., Staats, W., Yiang, J., and Parrott, D.: Quantifying the accuracy of LiDAR-derived DEM in deciduous eastern forests of the Cumberland Plateau, J. Geo. Info. System, 9, 339–353, https://doi.org/10.4236/jgis.2017.93021, 2017.
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., Painter, T. H., Hiemstra, C. A., Gelvin, A., Uhlmann, Z., and Spaete, L.: Comparing aerial lidar observations with terrestrial lidar and snow-probe transects from NASA's 2017 SnowEx campaign, Water Resour. Res., 55, 6285–6294, https://doi.org/10.1029/2018wr024533, 2019.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: a review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154, 2013.
Dewitz, J.: National Land Cover Database (NLCD) 2016 Products (ver. 3.0, November 2023), U. S. Geological Survey, https://doi.org/10.5066/P96HHBIE, 2019.
Dharmadasa, V., Kinnard, C., and Baraër, M.: An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar, Remote Sens.-Basel, 14, 1649, https://doi.org/10.3390/rs14071649, 2022.
Dickerson-Lange, S. E., Vano, J. A., Gersonde, R., and Lundquist, J. D.: Ranking Forest Effects on Snow Storage: A Decision Tool for Forest Management, Water Resour. Res., 57, e2020WR027926, https://doi.org/10.1029/2020WR027926, 2021.
Diez, D. M. and Barr, C. D.: OpenIntro Statistics, 2nd edn., Boston, MA, USA, https://www.openintro.org/book/os/ (last access: 21 March 2024), 2012.
Douglas, T. A. and Zhang, C.: Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska, Environ. Res. Lett., 16, 065014, https://doi.org/10.1088/1748-9326/ac04d8, 2021.
Erxleben, J., Elder, K., and Davis, R.: Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains, Hydrol. Process., 16, 3627–3649, https://doi.org/10.1002/hyp.1239, 2002.
ESRI: ArcGIS Pro: Release 3.3.2, Environmental Systems Research Institute, Redlands, California, USA, https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview, last access: 15 December 2024.
Gould, S. B., Glenn, N. F., Sankey, T. T., and McNamara, J. P.: Influence of a dense, low-height shrub species on the accuracy of a LiDAR-derived DEM, Photogramm. Eng. Rem. S., 79, 421–431, https://doi.org/10.14358/PERS.79.5.421, 2013.
Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz, B.: A global analysis of temporal and spatial variations in continental water storage, Water Resour. Res., 43, W05416, https://doi.org/10.1029/2006WR005247, 2007.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Harpold, A. A., Guo, Q., Molotch, N., Brooks, P. D., Bales, R., Fernandez-Diaz, J. C., Musselman, K. N., Swetnam, T. L., Kirchner, P., Meadows, M. W., Flanagan, J., and Lucas, R.: LiDAR-derived snowpack data sets from mixed conifer forests across the Western United States, Water Resour. Res., 50, 2749–2755, https://doi.org/10.1002/2013WR013935, 2014.
Haugen, R. K., Slaughter, C. W., Howe, K. E., and Dingman, S. L.: Hydrology and climatology of the Caribou-Poker creeks research watershed, Alaska, US Army Cold Regions Research and Engineering Laboratory CRREL, Report 82-26, Hanover, NH, USA, https://apps.dtic.mil/sti/html/tr/ADA122402/ (last access: 12 February 2024), 1982.
Hojatimalekshah, A., Uhlmann, Z., Glenn, N. F., Hiemstra, C. A., Tennant, C. J., Graham, J. D., Spaete, L., Gelvin, A., Marshall, H.-P., McNamara, J. P., and Enterkine, J.: Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning, The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, 2021.
Homan, J. W. and Kane, D. L.: Arctic snow distribution patterns at the watershed scale, Hydrol. Res., 46, 507–520, https://doi.org/10.2166/nh.2014.024, 2015.
Hopkinson, C., Sitar, M., Chasmer, L., and Treitz, P.: Mapping snowpack depth beneath forest canopies using airborne lidar, Photogramm. Eng. Rem. S., 70, 323–330, https://doi.org/10.14358/PERS.70.3.323, 2004.
Hopkinson, C., Collins, T., Anderson, A., Pomeroy, J., and Spooner, I.: Spatial snow depth assessment using LiDAR transect samples and public GIS data layers in the Elbow River Watershed, Alberta, Water Resour. J., 37, 69–87, https://doi.org/10.4296/cwrj3702893, 2012.
Huang, C. L., Wang, H. W., and Hou, J. L.: Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations, The Cryosphere Discuss., 9, 4997–5020, https://doi.org/10.5194/tcd-9-4997-2015, 2015.
Jacobs, J. M., Hunsaker, A. G., Sullivan, F. B., Palace, M., Burakowski, E. A., Herrick, C., and Cho, E.: Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States, The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, 2021.
Kane, D. L. and Yang, D.: Overview of water balance determinations for high latitude watersheds, IAHS-AISH Publications-Series of Proceedings and Reports, 290, 1–12, 2004.
Komarov, A. and Sturm, M.: Local variability of a taiga snow cover due to vegetation and microtopography, Arct. Antarct. Alp. Res., 55, 2170086, https://doi.org/10.1080/15230430.2023.2170086, 2023.
Koutantou, K., Mazzotti, G., Brunner, P., Webster, C., and Jonas, T.: Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR, Cold Reg. Sci. Technol., 200, 103587, https://doi.org/10.1016/j.coldregions.2022.103587, 2022.
Kozii, N., Laudon, H., Ottosson-Löfvenius, M., and Hasselquist, N. J.: Increasing water losses from snow captured in the canopy of boreal forests: A case study using a 30 year data set, Hydrol. Process., 31, 3558–3567, https://doi.org/10.1002/hyp.11277, 2017.
Kruskal, W. H. and Wallis, W. A.: Use of Ranks in One-Criterion Variance Analysis, J. Am. Stat. Assoc., 47, 583–621, https://doi.org/10.1080/01621459.1952.10483441, 1985.
Lader, R., Walsh, J. E., Bhatt, U. S., and Bieniek, P. A.: Anticipated changes to the snow season in Alaska: Elevation dependency, timing and extremes, Int. J. Climatol., 40, 169–187, https://doi.org/10.1002/joc.6201, 2020.
Larsen, C.: SnowEx23 Airborne Lidar-Derived 0.25M Snow Depth and Canopy Height (SNEX23_Lidar, Version 1), NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/BV4D8RRU1H7U, 2024.
Li, J., Larsen, C., Rodriguez-Morales, F., Arnold, E., Leuschen, C., Paden, J., Shang, J., and Gomez-Garcia, D.: Comparison of coincident forest canopy measurements from airborne lidar and ultra-wideband microwave radar, Int. Geosci. Remote Se., 14, 6755–6765, https://doi.org/10.1109/IGARSS47720.2021.9554932, 2021.
Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow trends (1979–2009), J. Climate, 24, 5691–5712, https://doi.org/10.1175/JCLI-D-11-00081.1, 2011.
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, J. Glaciol., 44, 498–516, https://doi.org/10.1017/S0022143000002021, 1998.
Lloyd, C. D. and Atkinson, P. M.: Assessing uncertainty in estimates with ordinary and indicator kriging, Comput. Geosci., 27, 929–937, https://doi.org/10.1016/S0098-3004(00)00132-1, 2001.
Lundquist, J. D., Dickerson-Lange, S. E., Lutz, J. A., and Cristea, N. C.: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling, Water Resour. Res., 49, 6356–6370, https://doi.org/10.1002/wrcr.20504, 2013.
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P., Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E. M., Christoffersen, M. S., Cochran, J. R., Csathó, B. M., De Marco, E. L., Dominguez, R. A. T., Fahnestock, M. A., Farrell, S. L., Gogineni, S. P., Greenbaum, J. S., Hansen, C. M., and Yungel, J. K.: The Scientific Legacy of NASA's Operation IceBridge, Rev. Geophys., 59, e2020RG000712, https://doi.org/10.1029/2020RG000712, 2021.
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947.
May, L., Stuefer, S., Vuyovich, C. M., Elder, K., Osmanoglu, B., Marshall, H., Durand, M., Vas, D., Gelvin, A. B., Liddle Broberg, K., and Maakestad, J.: SnowEx23 Mar22 IOP Snow Depth Measurements (SNEX23_MAR22_SD, Version 1), NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/086OMZDJP2W6, 2024.
Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D., and Jonas, T.: Revisiting Snow Cover Variability and Canopy Structure Within Forest Stands: Insights From Airborne Lidar Data, Water Resour. Res., 55, 6198–6216, https://doi.org/10.1029/2019WR024898, 2019.
Moeser, D., Mazzotti, G., Helbig, N., and Jonas, T.: Representing spatial variability of forest snow: Implementation of a new interception model, Water Resour. Res., 52, 1208–1226, https://doi.org/10.1002/2015WR017961, 2016.
Nolan, M., Larsen, C., and Sturm, M.: Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry, The Cryosphere, 9, 1445–1463, https://doi.org/10.5194/tc-9-1445-2015, 2015.
Ohmer, M., Liesch, T., Goeppert, N., and Goldscheider, N.: On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange, Adv. Water Resour., 109, 121–132, https://doi.org/10.1016/j.advwatres.2017.08.016, 2017.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M. K., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Panda, S. K., Prakash, A., Solie, D. N., Romanovsky, V. E., and Jorgenson, M. T.: Remote sensing and field-based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska, Permafrost Periglac., 21, 271–281, https://doi.org/10.1002/ppp.686, 2010.
Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Nield, S. J., Johnson, K. D., and Finley, A. O.: Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions, Remote Sens. Environ., 168, 301–315, https://doi.org/10.1016/j.rse.2015.07.019, 2015.
Pomeroy, J. W., Gray, D. M., Hedstrom, N. R., and Janowicz, J. R.: Prediction of seasonal snow accumulation in cold climate forests, Hydrol. Process., 16, 3543–3558, https://doi.org/10.1002/hyp.1228, 2002.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, https://www.R-project.org/ (last access: 18 September 2024), 2022.
Reinking, A. K., Pedersen, S. H., Elder, K., Boelman, N. T., Glass, T. W., Oates, B. A., Bergen, S., Coughenour, M. B., Feltner, J. A., Barker, K. J., Prugh, L. R., Brinkman, T. J., Bentzen, T. W., Pedersen, A. O., Schmidt, N. M., and Liston, G. E.: Collaborative wildlife–snow science: Integrating wildlife and snow expertise to improve research and management, Ecosphere, 13, e4094, https://doi.org/10.1002/ecs2.4094, 2022.
Reutebuch, S. E., Mc Gaughey, R. J., Andersen, H. E., and Carson, W. W.: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy, Can. J. Remote Sens., 29, 527–535, https://doi.org/10.5589/m03-022, 2003.
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins, W. D., and Kaatz, L.: A low-to-no snow future and its impacts on water resources in the western United States, Nat. Rev. Earth Environ., 2, 800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021.
Smith, C. W., Panda, S. K., Bhatt, U. S., and Meyer, F. J.: Improved boreal forest wildfire fuel type mapping in interior alaska using aviris-ng hyperspectral data, Remote Sens.-Basel, 13, 897, https://doi.org/10.3390/rs13050897, 2021.
Spaete, L. P., Glenn, N. F., Derryberry, D. R., Sankey, T. T., Mitchell, J. J., and Hardegree, S. P.: Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe. Remote Sens. Lett., 2, 317–326, https://doi.org/10.1080/01431161.2010.515267, 2011.
Storck, P., Lettenmaier, D. P., and Bolton, S. M.: Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States, Water Resour. Res., 38, 5-1–5-16, https://doi.org/10.1029/2002wr001281, 2002.
Stuefer, S., Kane, D. L., and Liston, G. E.: In situ snow water equivalent observations in the US Arctic, Hydrol. Res., 44, 21–34, 2013.
Sturm, M. and Holmgren, J.: An Automatic Snow Depth Probe for Field Validation Campaigns, Water Resour. Res., 54, 9695–9701, https://doi.org/10.1029/2018WR023559, 2018.
Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow Classification: An Updated Dataset for Earth System Applications, J. Hydrometeorol., 22, 2917–2938, https://doi.org/10.1175/jhm-d-21-0070.1, 2021.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010jhm1202.1, 2010.
Tabari, H., Marofi, S., Abyaneh, H. Z., and Sharifi, M. R.: Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran, Neural Comput. Appl., 19, 625–635, https://doi.org/10.1007/s00521-009-0320-9, 2010.
Tennant, C. J., Harpold, A. A., Lohse, K. A., Godsey, S. E., Crosby, B. T., Larsen, L. G., Brooks, P. D., Van Kirk, R. W., and Glenn, N. F.: Regional sensitivities of seasonal snowpack to elevation, aspect, and vegetation cover in western North America, Water Resour. Res., 53, 6908–6926, https://doi.org/10.1002/2016WR019374, 2017.
Tinkham, W. T., Smith, A. M. S., Marshall, H. P., Link, T. E., Falkowski, M. J., and Winstral, A. H.: Quantifying spatial distribution of snow depth errors from LiDAR using Random Forest, Remote Sens. Environ., 141, 105–115, https://doi.org/10.1016/j.rse.2013.10.021, 2014.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields, Water Resour. Res., 43, W07409, https://doi.org/10.1029/2006WR005317, 2007.
Uhlmann, Z., Glenn, N. F., Spaete, L. P., Hiemstra, C., Tennant, C., and McNamara, J.: Resolving the influence of forest-canopy structure on snow depth distributions with terrestrial laser scanning, Int. Geosci. Remote Se., 2018, 6284–6286, https://doi.org/10.1109/IGARSS.2018.8517911, 2018.
USDA Forest Service Pacific Northwest Research Station: Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed, https://research.fs.usda.gov/pnw/forestsandranges/locations/bcef-cpcrw (last access: 30 October 2024), 2023.
USDA Natural Resources Conservation Service: Alaska snow survey report for March 2022, https://www.nrcs.usda.gov/ (last access: 30 October 2024), 2022.
USDA Natural Resources Conservation Service: Climatic and Hydrologic Normals, https://www.nrcs.usda.gov/resources/data-and-reports/climatic-and-hydrologic-normals, last access: 30 October 2024.
Vuyovich, C., Stuefer, S., Durand, M., Marshall, H. P., Osmanogln, B., Elder, K., Vas, D., Gelvin, A., Larsen, C., Pedersen, S., Hodkinson, D., Deeb, E., Mason, M., and Youcha, E.: NASA SnowEx 2023 Experiment Plan, https://snow.nasa.gov/campaigns/snowex-2023-tundra-and-boreal-forest (last access: 12 October 2024), 2024.
Webb, R. W., Raleigh, M. S., McGrath, D., Molotch, N. P., Elder, K., Hiemstra, C., Brucker, L., and Marshall, H. P.: Within-Stand Boundary Effects on Snow Water Equivalent Distribution in Forested Areas, Water Resour. Res., 56, e2019WR024905, https://doi.org/10.1029/2019WR024905, 2020.
Woo, M. K.: Moisture and Heat, in: Permafrost Hydrology, Springer-Verlag, Berlin, Heidelberg, Germany, 35–72, https://doi.org/10.1007/978-3-642-23462-0, 2012.
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G. C., Rigge, M., and Xian, G.: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies, ISPRS J. Photogramm., 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018.
Zheng, Z., Kirchner, P. B., and Bales, R. C.: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data, The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, 2016.
Short summary
We contribute to limited boreal forest snow remote sensing research by analyzing field snow depth and airborne lidar data. Two new lidar snow depth and canopy height products are evaluated for application at a boreal forest site in Alaska. Our results show that airborne lidar can effectively estimate snow depths in the boreal forest, should be validated and assessed for errors using ground-based measurements, and can assist water and resource managers in estimating snow depth in boreal forests.
We contribute to limited boreal forest snow remote sensing research by analyzing field snow...