Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-3477-2025
https://doi.org/10.5194/tc-19-3477-2025
Research article
 | 
04 Sep 2025
Research article |  | 04 Sep 2025

Analyzing vegetation effects on snow depth variability in Alaska's boreal forests with airborne lidar

Lora D. May, Svetlana L. Stuefer, Scott D. Goddard, and Christopher F. Larsen

Related authors

Brief Communication: Evaluating Snow Depth Measurements from Ground-Penetrating Radar and Airborne Lidar in Boreal Forest and Tundra Environments during the NASA SnowEx 2023 Campaign
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435,https://doi.org/10.5194/egusphere-2025-2435, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
The demise of the world's largest piedmont glacier: a probabilistic forecast
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025,https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary

Cited articles

Alaska Fuel Model Guide Task Group: Fuel Model Guide to Alaska Vegetation, Unpubl. Report, Alaska Wildland Fire Coordinating Group, Fire Modeling and Analysis Committee, Fairbanks, AK, USA, https://fire.ak.blm.gov/content/admin/awfcg/C.%20Documents/Revised%20Alaska%20Fuel%20Model%20Guide%202018-05-22.pdf (last access: 15 April 2024), 2018. 
Ashtiani, Z. and Deutsch, C. V.: Kriging with Constraints, Geostatistics Lessons, Geostatisticslessons.Com. 2024, https://geostatisticslessons.com/lessons/krigingconstraints, last access: 27 October 2024. 
Askne, J. I. H., Soja, M. J., and Ulander, L. M. H.: Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model, Remote Sens. Environ., 196, 265–278, https://doi.org/10.1016/j.rse.2017.05.010, 2017. 
Barnett, T., Malone, R., Pennell, W., Stammer, D., Semtner, B., and Washington, W.: The effects of climate change on water resources in the west: Introduction and overview, Climatic Change, 62, 1–11, https://doi.org/10.1023/B:CLIM.0000013695.21726.b8, 2004. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Download
Short summary
We contribute to limited boreal forest snow remote sensing research by analyzing field snow depth and airborne lidar data. Two new lidar snow depth and canopy height products are evaluated for application at a boreal forest site in Alaska. Our results show that airborne lidar can effectively estimate snow depths in the boreal forest, should be validated and assessed for errors using ground-based measurements, and can assist water and resource managers in estimating snow depth in boreal forests.
Share