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Abstract. Lidar-derived snow depth and canopy height maps
were used to analyze snow depth spatial variability at a bo-
real forest site in Alaska. High-resolution (0.5 m) airborne li-
dar data were acquired during NASA’s SnowEx Alaska field
campaigns during peak snow-on accumulation (March 2022)
and snow-off (May 2022). The impact of canopy height on
snow distribution was studied at the Caribou Poker Creeks
Research Watershed, located northeast of Fairbanks, Alaska,
US. Ground-based snow depth measurements were collected
concurrently with the March snow-on lidar survey and were
compared to collocated lidar-derived snow depths. The com-
parison between ground-based and lidar-derived snow depths
produced a bias of 2.0cm and a root mean square error
(RMSE) of 12.0cm. The lidar snow depth map showed a
mean snow depth of HS =98 cm and a standard deviation
of SD = 15 cm for the study site. The influence of vegetation
on end-of-winter snow depth distribution was analyzed using
three canopy height classes: (1) forest, (2) shrub and short
stature trees (SSS), and (3) treeless. Results showed a statis-
tically significant difference in median snow depths across
canopy height classes, with the largest significant differences
between forest and treeless (12—14 cm) and between forest
and SSS (8-14 cm). These differences in snow depth cor-
respond to a snow water equivalent range of approximately
20-30 mm. This study provides insights into the spatial vari-
ability of snow depths in Alaska’s boreal forests by using
ground-based measurements to evaluate the accuracy of air-
borne lidar to estimate snow depths in a boreal forest ecosys-
tem. The results of this research can be used to assist water
and resource managers in determining best practices for es-

timating snow depth and its spatial variability in the boreal
forest of Alaska.

1 Introduction

Snow plays a significant role in hydrologic, atmospheric, and
ecological processes globally. Snow cover impacts the ther-
mal regime of the soil, water and energy balances, land use
decisions, winter recreation, and the timing and volume of
spring runoff (Barnett et al., 2005; Boelman et al., 2019;
Chapin et al., 2000, 2005). In the boreal forest seasonal
snowpack and its melting dominate annual hydrological and
climatic patterns (Barnett et al., 2004; Kane and Yang, 2004;
Kozii et al., 2017). The snowpack accumulates from the fall
through the following spring with few melt or runoff events.
The spring snowmelt is often the major hydrological event
each year and usually correlates with the peak discharge of
the season (Kane and Yang, 2004; Kozii et al., 2017; Tennant
etal., 2017).

In boreal forest regions, the spatial and temporal variabil-
ity of snow depth (HS) can be significant due to static con-
trols such as land cover, topography, soil, and permafrost
(Cho et al., 2021; Pastick et al., 2015; Woo, 2012) and due to
dynamic processes including canopy—snow interactions (Ho-
jatimalekshah et al., 2021; Kozii et al., 2017; Uhlmann et al.,
2018), wind distribution (Homan and Kane, 2015; Liston and
Sturm, 1998), longwave and shortwave radiation (Lundquist
et al., 2013), and solid and liquid precipitation trends (Bolton
et al., 2004; Brown and Goodison, 1996; Kane and Yang,
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2004; Lader et al., 2020). Boreal forest snow is classified as
cold with thin to moderate (0.3—1.3 m) snow depths and low-
density (217 kg m~3) snow cover (Sturm and Liston, 2021).
The low density is due to the extensive depth hoar (occupy-
ing 2/3 to virtually all the snow cover) and few to no melt
events during the winter season. New and recent snow lay-
ers at the surface of the snow retain their basic snow crystal
structures for days due to the cold air temperatures, relatively
low amounts of precipitation, and the absence of wind (Sturm
and Liston, 2021).

The boreal forest is one of the world’s largest forest
biomes, making up approximately 30% of the world’s
forested regions (Askne et al., 2017). In the Northern Hemi-
sphere, 20 % of the seasonal snow cover occurs within
forested regions (Glintner et al., 2007). Forests canopies
modify snow accumulation, ablation rates, and overall snow
storage by intercepting snowfall (Dickerson-Lange et al.,
2021; Lundquist et al., 2013; Storck et al., 2002; Uhlmann
et al., 2018). Intercepted snow can account for as much as
40 %—-60 % of annual snowfall in boreal forests (Kozii et al.,
2017; Pomeroy et al., 2002). All these processes are strongly
controlled by the structure of the forest canopy at small spa-
tial scales that interact to create variable snow distribution
patterns (Broxton et al., 2015, 2019; Dickerson-Lange et al.,
2021; Mazzotti et al., 2019). In boreal regions land cover is a
mixture of spruce, deciduous, and mixed forests, shrublands,
and low-lying herbaceous wetlands. Snow depth can be no-
ticeably different across land cover types under the same cli-
matic conditions. Accurately accounting for forest effects on
snow storage and distribution will become even more impor-
tant as forests change due to warming climate conditions, for-
est disturbances, wildfires, insect infestation, and permafrost
degradation (Panda et al., 2010; Smith et al., 2021). In turn,
these changing forests impact hydrological regimes, water
availability, timing and magnitude of snowmelt runoff, and
water resources for land and civilian uses (Dickerson-Lange
et al., 2021; Hopkinson et al., 2004; Mazzotti et al., 2019;
Webb et al., 2020).

Monitoring forest changes and subsequent snow storage
and distribution effects is vitally important to water and re-
source managers. Remote sensing techniques are advancing
our understanding of links between forest snow distribution
and canopy structure by providing high-resolution spatial
data on snow on the ground and the detailed structure of for-
est canopies at landscape scales and across previously un-
available extends (Harpold et al., 2014; Jacobs et al., 2021;
Li et al., 2021). One remote sensing technique, airborne-
based light detection and ranging (lidar), has been used for
almost two decades to describe snow depths in forests (Hop-
kinson et al., 2004), and lidar techniques are evolving to bet-
ter characterize forest properties (land cover, canopy den-
sity, height, gaps, etc.) relevant to snow distribution (Li et
al., 2021; Mazzotti et al., 2019; Moeser et al., 2016; Ten-
nant et al., 2017; Yang et al., 2018; Zheng et al., 2016). Stud-
ies show that, compared to traditional manual measurements,
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lidar data that provide spatially continuous, high-resolution
snow depth maps have greatly advanced the capacity to char-
acterize the spatial variability in snow depth at a mesoscale,
i.e., watershed scale (Deems et al., 2013; Harder et al., 2020;
Hopkinson et al., 2004, 2012; Jacobs et al., 2021; Nolan et
al., 2015; Painter et al., 2016; Trujillo et al., 2007), while
maintaining a statistically significant relationship between
lidar-derived snow depths and manual field measurements
(Douglas and Zhang, 2021; Harpold et al., 2014; Hopkinson
et al., 2004, 2012; Jacobs et al., 2021; Mazzotti et al., 2019;
Reutebuch et al., 2003). However, when comparing lidar ac-
curacy between forest and non-forested areas, existing vali-
dation studies yield contrasting conclusions (Harpold et al.,
2014). Despite considerable literature on airborne lidar snow
depth retrievals in forested environments, little research has
been published on its ability to measure snow depth in boreal
forests, and results are varied in identifying what vegetation
characteristics are driving snow depth variability in boreal
forest ecosystems.

The purpose of this paper is to contribute to limited boreal
forest snow remote sensing research by analyzing ground-
based snow depth measurements and airborne lidar data to
improve snow depth estimation at a watershed scale. Specifi-
cally, we ask the following. (1) Can combining ground-based
measurements with airborne lidar improve snow depth es-
timation in the Caribou Poker Creeks Research Watershed
(CPCRW)? (2) How does vegetation height influence snow
depth variability within CPCRW? Two new airborne lidar-
derived data products obtained during the NASA SnowEx
Alaska campaigns are used for the analysis. A lidar-derived
snow depth map is compared to ground-based measurements
to evaluate the accuracy of lidar to estimate snow depths in
an Alaska boreal forest. A lidar-derived canopy height map is
used to evaluate a vegetation metric that quantifies the spatial
variability of snow depths in boreal forests. The results can
then be used to educate and assist water and resource man-
agers in the effectiveness of airborne lidar to accurately esti-
mate snow depth and snow water equivalent (SWE) in boreal
forests of Alaska. The utility of the lidar-derived vegetation
metric can further enhance understanding of vegetation and
snow interactions while improving snow modeling applica-
tions.

2 Study site and data
2.1 Study site

The study was conducted in the Caribou Poker Creeks Re-
search Watershed located approximately 48 km northwest of
Fairbanks, Alaska (Fig. 1). CPCRW is a relatively pristine,
104 km? basin reserved for meteorologic, hydrologic, and
ecologic research. The site was established in 1987 as part
of the National Science Foundation’s Long Term Ecological
Research (LTER) Program, and it is one of only two desig-
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nated forest research facilities in the true boreal forest zone
of the United States (USDA Forest Service Pacific Northwest
Research Station, 2023). The watershed spans an elevation
of 200-830 m and reports a mean annual air temperature of
—3.3°C and mean annual precipitation of 625 mm (USDA
Natural Resources Conservation Service), 40 % of which can
be snowfall (Liston and Hiemstra, 2011; USDA Forest Ser-
vice Pacific Northwest Research Station, 2023). Approxi-
mately 30 % of its area is underlain by continuous and dis-
continuous permafrost (Fig. 1) (Bonanza Creek LTER; Hau-
gen et al., 1982).

Two streams are found within CPCRW, Caribou Creek and
Poker Creek. The Caribou Creek watershed is divided into
four subbasins (C1, C2, C3, and C4), and the Poker Creek
watershed is divided into six subbasins (P1, P2, P3, P4, P5,
and P6) (Fig. 1) (Haugen et al., 1982). The drainage pattern
of the two streams is dendritic, and stream channels in the
subdrainages are generally steep-walled and narrow, while
the main channels are wider, often with alternating pools
and riffles (Bredthauer and Hoch, 1979). The two streams
converge at the south-central portion of the watershed and
then flow into the Chatanika River. The Chatanika joins the
Tolovana River, which flows into the Tanana River and then
into the Yukon River. The vegetative cover within the wa-
tershed consists of deciduous, evergreen and mixed forests,
shrublands, and woody wetlands. A dense understory per-
sists throughout the watershed. South-facing slopes are dom-
inated by well-drained deciduous and mixed forests of aspen
(Populus tremuloides), poplar (Populus balsamifera), birch
(Betula neoalaskana), and white spruce (Picea glauca). The
understory consists of patchy alder (Alnus viridis) and wil-
low (Salix spp.). North-facing slopes are dominated by ever-
green forests with black spruce (Picea mariana) as the domi-
nant species. Understories contain dwarf shrubs (e.g., Betula
nana, Salix spp., Ledum groenlandicum), feather moss, and
lichen (Bonanza Creek LTER, 2023).

2.2 Data
2.2.1 Ground-based snow depths

Ground-based snow depths were obtained from snow mea-
surements conducted in the CPCRW on 11 March 2022
(May et al., 2024) during the planning phase for the NASA
SnowEx Alaska campaigns. SnowEx was a multiyear pro-
gram initiated and funded by the NASA Terrestrial Hydrol-
ogy Program. Using fieldwork and various remote sensing
technologies, SnowEx Alaska aims to determine (Vuyovich
et al., 2024) the answer to the following question: how well
can we characterize the spatial variability of snow depth and
density needed for accurate SWE estimates in the boreal for-
est by measuring snow depth, density, and vegetation charac-
teristics? In 2022 and 2023, the NASA SnowEx campaigns
focused on the Arctic tundra and boreal forest regions of
Alaska.
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A total of 2114 ground-based snow depth measurements
were collected at the study site in a spiral pattern, approx-
imately 1-3 m apart, with a GPS-enabled snow depth mea-
surement device called a magnaprobe (Sturm and Holmgren,
2018). The magnaprobe consists of a 1.3 m long ~ 1 cm di-
ameter rod with a moveable basket that uses a GPS and a
magneto restrictive material inside the rod to record snow
depth and location in seconds (Sturm and Holmgren, 2018).
GPS horizontal location accuracy is 2.5 m in open areas
but may decrease to 10-15m in dense forest (Douglas and
Zhang, 2021; Sturm and Holmgren, 2018). Snow depth mea-
surements were taken at four sample locations within the
CPCRW (Fig. 1); measurements were used as validation
points to determine the accuracy of the lidar-derived snow
depth map.

Two additional snow depth measurements were obtained
from snow course sites operated by the USDA Natural
Resources Conservation Service (NRCS) within CPCRW
(Fig. 1). Snow depth records date back to December 1969
at both sites, with the 30-year (1991-2020) median snow
depths available for the start of each month. At the start of
March, the 30-year median snow depth for the Caribou Creek
snow course was 58 cm and for the Caribou Snow Pillow
snow course was 56 cm (USDA Natural Resources Conser-
vation Service, 2022). Snow depths recorded on 1 March
2022 from the Caribou Creek and Caribou Snow Pillow
snow course sites were compared to the SnowEx Alaska
ground-based and lidar-derived snow depth values collected
on 11 March 2022.

2.2.2 Airborne lidar

Airborne lidar, an active remote sensing system, records the
time required for emitted light to travel to the ground and
back to an airplane-mounted sensor. The sensor includes a
GPS that identifies the X, Y, and Z location of the light en-
ergy and an internal measurement unit that provides the ori-
entation of the plane in the sky. The resultant data can be
used to create a high-resolution digital terrain model (DTM)
that approximates a bare earth surface. Differencing a snow-
free from a snow-on surface elevation data set allows for
a straightforward mapping of snow depth. In addition to
providing spatial data on snow distribution, airborne lidar
can produce spatial data on canopy heights by subtracting a
bare earth digital terrain model from a digital surface model
(DSM). A DSM models the canopy and the top of the veg-
etation by accounting for all the first, or only, lidar pulses
returned to the sensor.

Two airborne lidar surveys were flown over CPCRW
(Larsen, 2024). The first was flown prior to the onset of
snowmelt on 11 March 2022. The second was flown on
29 May 2022 during snow-free conditions. The lidar flight
area of coverage is represented by the red box in Fig. 1 and
constitutes the study site. All references to CPCRW and all
statistical analysis performed in this study are in reference
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Figure 1. Map of the Alaska boreal forest ecozone (a) and the location of the Caribou Poker Creeks Research Watershed (b). Subbasins of
the CPCRW, permafrost areas, the location of ground-based snow depth measurements taken on 11 March 2022, and the coverage of the
lidar flight flown on 11 March 2022 are shown on the map in panel (c). Base map source: ESRI.

to the larger area within the lidar box, not the boundary of
the watershed (Fig. 1). The 11 March 2022 lidar survey oc-
curred concurrently with ground-based snow depth measure-
ments taken on the same day. Differencing the May snow-
free DSM from the May snow-free DTM produced a lidar-
derived canopy height map.

The lidar and stereophotogrammetry instruments are com-
bined on a rigid mount and deployed simultaneously in a
Cessna T206 aircraft. The lidar scanner uses a 1064 nm
wavelength laser and has adjustable pulse repetition fre-
quency up to 2000kHz. The scanner has a rotating mirror
that sweeps the beam across 75° (£37.5° off nadir), result-
ing in shot lines perpendicular to the flight path (MacGregor
et al., 2021). Flight lines are planned with > 50 % sidelap
to target 20 points per square meter for each survey cover-
age. The higher pulse frequency and point rate increase the
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probability of sufficient laser points penetrating the canopy,
reaching the ground, and returning to the sensor (Campbell
et al., 2018; Deems et al., 2013). The vertical and horizontal
accuracy of the lidar snow depth and canopy height maps is
+5.0cm.

3 Methods
3.1 Lidar data review

The lidar data products were reviewed for quality control and
visually inspected for abnormalities. Lidar snow depth and
canopy height pixel values that represented unlikely snow
depths or canopy heights for the CPCRW, or that displayed
abnormal distribution patterns, were removed from the anal-
ysis. Negative pixel values, which are usually the result of
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error points in one of the lidar data sets, were assigned a “no
data” code during quality control.

The lidar snow depth map contained pixel values ranging
from —300 to 499 cm, an implausible range in snow depths
for CPCRW. We referenced the maximum ground-based
SnowEx snow depths, the maximum NRCS snow course
measurements, and a histogram of the lidar snow depths to
determine a plausible snow depth range for CPCRW. A color
scale map of the lidar snow depths was generated to identify
potential patterns indicating the presence of unlikely snow
depth values. The lidar snow depth map was then corrected
to include only pixels occurring within the plausible snow
depth range, and all remaining pixels were classified as “no
data.”

The lidar canopy height map contained pixel values rang-
ing from —3 to 40 m. All positive canopy height values were
included in the analysis and classified according to the vege-
tation found within CPCRW. Canopy height classes were de-
termined after referencing the vegetation classification used
in the US Geological Survey National Land Cover Database
(NLCD) 2016 Land Cover — Alaska (ver. 2.0, July 2020) (De-
witz, 2019) and the Fuel Model Guide to Alaska Vegetation
(Alaska Fuel Model Guide Task Group, 2018).

3.2 Collocated ground-based and lidar-derived snow
depths

Ground-based measurements were used as validation points
to evaluate the accuracy of the lidar-derived snow depth map.
GPS coordinates for every ground-based snow depth mea-
surement were extracted from the magnaprobe data logger,
quality-assured/quality-controlled, and uploaded into a GIS
software program. The corrected lidar-derived snow depth
map, containing only plausible snow depth values, and be-
fore any reduction techniques, was uploaded at the same
time. Using the nearest-neighbor sampling technique, a sin-
gle ground-based measurement was collocated to a corre-
sponding lidar pixel (0.5 m resolution), and a lidar-derived
snow depth value was extracted for each ground-based mea-
surement. Error statistics were calculated using the ground-
based and lidar-derived snow depth measurements to verify
the accuracy of the lidar-derived snow depth map.

3.3 Lidar data reduction

The lidar snow depth and canopy height rasters contain ap-
proximately 86 million positive pixels each. After the snow
depth and canopy height maps were reviewed and corrected,
a size reduction of both rasters was necessary for practical
processing times during the statistical analysis.

The first data reduction technique used for the statisti-
cal analysis was to determine the distance at which snow
depths were no longer spatially autocorrelated. To determine
spatial autocorrelation, 15 smaller areas of the lidar snow
depth map were partitioned, and a semivariogram was de-
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veloped for each area. The range value of each semivari-
ogram was estimated using the ordinary kriging (OK) inter-
polation method. Ordinary kriging is a frequently used in-
terpolation method for estimating snow depth because it is
easy to implement, considers the variables of variation and
distance between points, and assumes a constant mean (Ash-
tiani and Deutsch, 2024; Carroll and Cressie, 1996; Erxleben
et al., 2002; Huang et al., 2015; Lloyd and Atkinson, 2001;
Ohmer et al., 2017; Tabari et al., 2010). The semivariogram
ranges were then averaged over the 15 areas, and the spatial
resolution of the lidar snow depth map was adjusted based
on the semivariogram range, to effectively eliminate spatial
autocorrelation from contiguous pixels. The resulting snow
depth map displays the independent snow depths required
for the statistical analysis. The spatial resolution of the li-
dar canopy height map was altered to the same resolution
as the new snow depth map with corresponding pixel sizes.
Lidar maps were resampled using the nearest-neighbor tech-
nique. To further reduce the lidar snow depth map to a size
that allowed for practical processing times, three spatial sub-
sets were created. Each spatial subset was partitioned to ex-
hibit land cover and canopy height percentages comparable
to those of the entire study site. The new lidar snow depth
and canopy height maps were then clipped with each spatial
subset. The clipping allowed the lidar snow depth map to be
reduced from 86 million pixels to approximately 2 million
pixels for each spatial subset. The lidar-derived snow depths
from each spatial subset were used in the statistical analyses
and the lidar canopy height data were utilized for classifica-
tion purposes. The lidar data review, reduction, and compari-
son with ground-based measurements were performed using
ArcGIS Pro (ESRI, 2024) and R 4.1.2 statistical program-
ming (R Core Team, 2022) software.

3.4 Statistical analysis

The statistical analysis was performed with the reduced lidar
snow depth data. The Kruskal-Wallis statistical test was con-
ducted to determine if a statistically significant difference in
average snow depth existed between canopy height classes.
The standard one-way analysis of variance (ANOVA) test
was not used because normality of the residuals was not sat-
isfied, as determined by the shape of the normal Q—-Q plots
for each subset. The Kruskal-Wallis test is the nonparametric
equivalent of the ANOVA, does not assume normality in the
data, and is much less sensitive to outliers than the ANOVA
(Kruskal and Wallis, 1985).

Assumptions for the Kruskal-Wallis test are a continuous
response variable, independence, and that distributions have
similar shapes (Kruskal and Wallis, 1952). The assumption
of independence was met by thinning the data according to
the semivariogram range and applying the range to the re-
sampling technique. The assumption of similarly shaped dis-
tributions was verified through basic histogram examination.
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The null hypothesis states that all the median snow depths
among canopy height classes are equal.

The Kruskal-Wallis test uses the ranks of the data to cal-
culate the test statistic, H, given by Eq. (1):

12— T}

where 7 is the total sample size (number of snow depths), ¢
is the number of groups (canopy height classes) we are com-
paring, T; is the sum of ranks for group j, and n; is the
sample size of group j (number of snow depths within the
canopy height class). H is then compared to a critical cutoff
point determined by the chi-square distribution with (¢ — 1)
degrees of freedom. The chi-square is the sum of the squared
deviations and is applied for accurate approximation of the
distribution of H under the null hypothesis. If significant de-
viations are present, then the chi-square is large, and the p
value is small enough to be considered evidence of signifi-
cant deviations from chance (Diez and Barr, 2012). If the H
statistic is significant (H is larger than the cutoff) then the
null hypothesis is rejected. If the H statistic is not signifi-
cant (H is smaller than the cutoff) then the null hypothesis is
retained. The Kruskal-Wallis test was applied to obtain the
chi-square and p values.

To further characterize significance, the empirical
Wilcoxon rank sum test was utilized to identify canopy
height pairs with significantly different median snow depths
and to compute the pairwise differences in median snow
depths between each pair. The three canopy height pairs
used in the Wilcoxon rank sum test are forest and SSS, forest
and treeless, and SSS and treeless. The result will be used
to determine what effect canopy height has on snow depth
variability in the study site. The Wilcoxon rank sum test is a
nonparametric alternative to the two-sample ¢ test. It has two
assumptions: independence and equal variance (Mann and
Whitney, 1947). Independence was met by thinning the data,
while equal variance was verified using histograms. The
Wilcoxon test is based upon ranking the n| +n, observations
of the combined sample. Each observation has a rank: the
smallest has rank 1, the second smallest rank 2, and so
on (Mann and Whitney, 1947). The null hypothesis of the
Wilcoxon rank sum test states that the median snow depths
of the two samples are the same.

The test statistics for the Wilcoxon rank sum test are de-
noted by U and defined as the smaller of U; and U, below in
Egs. (2) and (3):

nin;+1

U1=n1n2+¥—R1, )
ny(ny+1

U2:n1n2+%—R2, 3)

where R is the sum of the ranks for group 1 and R; is the
sum of the ranks for group 2 (Mann and Whitney, 1947).
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Table 1. Canopy height percentages for each of the watershed sub-

basins located within the CPCRW.

Subbasin  Forest pixels  SSS pixels  Treeless pixels
P1 31.5% 31.9% 36.6 %
P2 34.4% 27.2% 384 %
P3 472 % 23.5% 29.3 %
P4 26.8 % 25.6 % 47.6 %
P5 52.0% 20.5% 27.5%
P6 142 % 357 % 50.1 %
Cl 28.2% 31.7% 40.1 %
C2 324 % 13.8% 53.8%
C3 232% 355% 413 %
Cc4 37.5% 21.8% 40.7 %

The test was conducted to calculate the p value, which in-
dicates a statistically significant difference in median snow
depths between the two sampled classes. The difference be-
tween median snow depths was computed for each vegeta-
tion class pair. SWE values were calculated using the end-
of-winter snow density statistic for the boreal forest climate
class (217 kgm™3) following the rationale outlined in Sturm
et al. (2010). The Kruskal-Wallis and Wilcoxon rank sum
tests were run using the R 4.1.2 statistical programming en-
vironment (R Core Team, 2022) to obtain corresponding chi-
square and p values for each spatial subset.

4 Results
4.1 Canopy height classes

Three canopy height classes were selected to study the effect
of vegetation on snow depth variability: (1) forest, (2) shrub
and short stature trees (SSS), and (3) treeless. Vegetation pix-
els with a lidar canopy height greater than 5.0 m were classi-
fied as “forest”; forest pixels constituted 25.9 % of the study
area (Fig. 2). Vegetation pixels with a lidar canopy height
ranging between 0.2 and 5.0 m were classified as “SSS”. and
pixels with a lidar canopy height of less than 0.2m were
classified as “treeless”. SSS pixels constituted 27.1 %, and
treeless pixels constituted 47.0 % of the study site (Fig. 2).
The percentage of canopy height pixels for each of the wa-
tershed subbasins can be found in Table 1. Subbasins P3 and
P5, within the Poker Creek watershed, contain the highest
percentage of forest pixels. The southernmost subbasins for
each watershed, P6 and C3, contain the highest SSS pixels,
and subbasins P6 and C2 contain the highest treeless pix-
els. The three canopy height classes were used to classify
ground-based and lidar-derived snow depths in the statistical
analysis. Photographs of the study site showing vegetative
examples of each canopy height classification without snow
cover can be found in Fig. 3.
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Figure 2. Canopy height map with color scale applied to show canopy height class distribution and subbasins (dashed white lines) within
CPCRW (solid white line).

Figure 3. Photographs of the vegetative land cover taken in CPCRW on 2 June 2022, showing forest and understory examples of each canopy
height class.
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Table 2. The mean manual snow depth (H S), range, standard devia-
tion (SD), and number of ground-based measurements (1) recorded
for the CPCRW and each canopy height class.

Class n HS MinHS MaxHS  SD

(cm) (cm) (cm) (cm)
All CPCRW 2114 88 23 121 94
Forest 177 85 42 99 8.7
SSS 236 87 29 100 10.6
Treeless 1464 88 23 121 9.3

4.2 Comparison of ground-based and lidar-derived
snow depths

Ground-based snow depth measurements cover approxi-
mately 0.4km? of the watershed area. The mean for all
ground-based snow depths in the study site (HS = 88 cm)
was similar to the mean snow depth calculated for ground-
based measurements classified by canopy height forest
(HS =85cm), SSS (HS=87cm), and treeless (HS =
88 cm) (Table 2). The range for all ground-based snow depths
was 23-121 cm (Table 2).

During March 2022 the snow depth at the USDA Caribou
Snow Pillow snow course was 94 cm. This represents a 61 %
increase from the 30-year median snow depth of 58 cm. At
the USDA Caribou Creek snow course, the March 2022 snow
depth was 89 cm, a 59 % increase from its 30-year median
of 56cm (USDA Natural Resources Conservation Service,
2022). These statistics demonstrate 2022 as an above-normal
snowpack year.

The lidar data review resulted in a plausible snow depth
range of 0—180cm, which represents 99.98 % of the snow-
covered area sampled by lidar. The remaining 0.02 % repre-
sents pixels that were located surrounding gaps (no data pix-
els) in the lidar, adjacent to structures, along trails, or scat-
tered in patterns that do not reflect natural snowpack condi-
tions. These pixels were omitted from the analysis.

Ground-based and lidar-derived snow depths were com-
pared to quantify lidar accuracy and analyze snow depth vari-
ability within the study site. The average lidar-derived snow
depth and standard deviation at in situ (ground-based) lo-
cations, at the study site, and in each canopy height class
can be found in Table 3. For the study site, the mean li-
dar snow depth was calculated to be 98 cm (Table 3). The
mean lidar snow depth at in situ locations was 90 cm. As sug-
gested by this research, the sample variance of snow depths
from airborne lidar minimally exceeds the sample variance
from ground-based snow depths at the study site. The mean
lidar-derived snow depths at collocated in situ locations was
2 cm more than the magnaprobe measurements from March
2022, and the mean lidar snow depth for the entire study site
was 10cm more than the magnaprobe measurements. Cal-
culated standard deviations indicate that ground-based snow
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Table 3. The mean lidar-derived snow depth (HS), standard devi-
ation (SD), and number of lidar pixels (n) for the study site and
canopy height classes.

Class n Lidar HS Lidar SD

(cm) (cm)
At in situ locations 2114 90 8.8
All CPCRW 86 million 98 15.3
Forest 22 million 90 13.3
SSS 23 million 102 14.6
Treeless 41 million 102 14.9

depth measurements vary by 9cm, whereas lidar-derived
snow depths for the study site vary by 15cm. At the sub-
basin level, the mean lidar snow depths for all subbasins
varied by 11 cm, with standard deviations ranging from 12—
17 cm (Fig. 4). When comparing mean snow depths with the
two snow course snow depths (89 and 94 cm), ground-based
mean snow depths were all lower, while mean lidar snow
depths were all between, or above, the snow course snow
depths. The mean lidar snow depths for canopy height classes
increased by 5cm for forest, 15 cm for SSS, and 14 cm for
treeless when compared to the corresponding mean snow
depth at in situ locations based on canopy height. A box
and whisker plot representing the mean lidar snow depth and
standard deviation for the subbasins is found in Fig. 4.

To quantify lidar accuracy, lidar-derived snow depths and
concurrent ground-based snow depths were compared statis-
tically. A scatterplot for all ground-based and lidar-derived
snow depths, and a corresponding 1 : 1 line, is displayed in
Fig. 5. Error statistics from the lidar validation analysis pro-
duced a bias of 2.0 cm, an RMSE of 12.0 ¢cm, and an R? value
of 0.012 (Fig. 5). Error statistics and scatterplots for ground-
based and lidar-derived snow depths based on canopy height
resulted in a bias of 2 cm and an RMSE of 12 cm for SSS and
treeless and a bias of 0 cm and an RMSE of 12 cm for forest
(Fig. 5). All three canopy height classes had low R? values
(Fig. 5).

4.3 Statistical analysis of lidar-derived snow depths
based on canopy height

To statistically compare lidar-derived snow depths between
canopy height classes, it was necessary to create a Snow
depth map with independent observations that had eliminated
spatial autocorrelation. The semivariogram analysis showed
the average semivariogram range for the lidar-derived snow
depth map to be 1.0m. The lidar snow depth map was re-
sampled to a 1.5 m spatial resolution to eliminate spatial au-
tocorrelation. The lidar canopy height map was resampled
to a 1.5 m spatial resolution to correspond to the lidar snow
depth map pixel size.

The lidar-derived snow depths and canopy heights from
the three spatial subsets were used as variables to run the
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Figure 4. Box and whisker plot representing lidar snow depths within each subbasin in the CPCRW. The white bar represents the mean lidar
snow depth, the gray boxes represent =1 standard deviation, and the whiskers represent the minimum and maximum lidar snow depth within

each subbasin.

Table 4. Results of the Kruskal-Wallis test comparing median lidar
snow depths based on canopy height class for each subset.

Chi-square P value
Subset 1 329932 <22x 10716
Subset 2 263750 <2.2x 1016
Subset 3 51595 <22x10716

statistical Kruskal-Wallis test. Results of the Kruskal-Wallis
test (Table 4) show that the p values comparing lidar-derived
snow depths with canopy height are below the required value
for significance (p value < 0.05). A small p value and a large
chi-square statistic allowed for a rejection of the null hypoth-
esis, which states that the median lidar-derived snow depths
between the canopy height classes are equal. A rejection of
the null hypothesis supports the finding that there is a statis-
tically significant difference in snow depths between canopy
height classes for all three spatial subsets.

After a statistically significant difference in lidar-derived
snow depths for the three spatial subsets was determined, the
Wilcoxon rank sum test was used to calculate the p value of
the median snow depth between specific canopy height pairs.
The results of the Wilcoxon rank sum test show a statisti-
cally significant difference in the snow depth medians be-
tween each of the following canopy height pairs: SSS and
forest, treeless and forest, and treeless and SSS had a p value
of <2 x 10710 for all three subsets, except treeless and SSS
for subset 2, which had a p value of < 6.2 x 107>,

https://doi.org/10.5194/tc-19-3477-2025

4.4 Influence of canopy height on snow depth
estimation

To analyze the influence of canopy height on snow depth dis-
tribution within the study site, the snow depth difference be-
tween specific canopy height pairs was calculated. This re-
sult was accomplished by observing the pairwise difference
in median snow depths calculated by the Wilcoxon rank sum
test. The pairwise difference was used to estimate the lidar
snow depth variability between each canopy height pair. The
difference in mean lidar-derived snow depths between each
canopy height pair for the three spatial subsets is shown in
Table 5. Two canopy height class pairs, SSS and forest as
well as treeless and forest, had mean snow depth differences
that were greater than the 5 cm lidar vertical accuracy range
for all three spatial subsets. When comparing the mean snow
depth differences between these two class pairs, SSS aver-
aged 9—14 cm more snow than forest (Table 5), and treeless
averaged 12—14 cm more snow than forest (Table 5) for all
three spatial subsets. This difference in snow depths is equiv-
alent to an SWE range of approximately 20—30 mm. Canopy
height SSS averaged slightly less snow than treeless, but the
mean snow depth differences for the three spatial subsets fell
within the £5 cm lidar vertical accuracy range.

5 Discussion

5.1 Sources of error and uncertainty in lidar-derived
snow depths

Ground-based snow depth measurements provide an inde-
pendent data set for the assessment of errors and uncertain-
ties in data collected remotely. A total of 10 previous studies
that used ground-based measurements to validate airborne li-
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Figure 5. Scatterplots comparing ground-based snow depths with collocated lidar snow depths with a corresponding 1 : 1 line for all ground-
based measurements within CPCRW (a), as well as for ground-based measurements classified into forest (b), SSS (c), and treeless (d) canopy

height classes. Error statistics for each classification are displayed.

Table 5. Difference in mean lidar-derived snow depth between
canopy height class pairs. The mean snow depth of the second class
listed is subtracted from the mean snow depth of the first class listed.

Canopy height pair Subset 1 Subset 2 Subset 3
difference  difference difference

(cm) (cm) (cm)

SSS—forest 9.0 14.0 9.0
Treeless—forest 12.0 14.0 13.0
Treeless—SSS 3.0 0.1 4.0

dar (Table 6) in forested areas found RMSEs ranging from
3 to 37 cm. Koutantou et al. (2022) found that their boreal
forest site had the highest RMSE (19-22 cm) compared to
their deciduous forest and field sites. This study’s calcu-
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lated RMSE for comparing lidar-derived snow depths with
ground-based measurements (RMSE = 12.5 cm) falls within
a range that is generally acceptable for most research (Har-
pold et al., 2014). However, the coefficient of determination
between ground-based and lidar-derived snow depths (R* =
0.012) is considerably lower for this study compared to the
studies listed in Table 6. We suggest that the low correla-
tion between our lidar-derived and ground-based snow depth
measurements is primarily due to vegetation, specifically the
dense understory. A prominent non-processing source of er-
ror in airborne lidar data is vegetation-induced errors (Deems
etal., 2013). Deems et al. (2013) found that the ground return
point density decreases inversely with canopy and subcanopy
density and is influenced by canopy and understory struc-
ture. Reutebuch et al. (2003) found that when using airborne
lidar to measure ground elevations in a forested area, the ac-
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curacy of the ground points was reduced by approximately
10 cm because the dense canopy and understory vegetation
reduced the strength of the return signal back to the sensor,
making it harder to precisely pinpoint the ground surface.
Prior studies noted similar lidar errors occurring in vegeta-
tive landscapes where shrubs were prominent (Contreras et
al., 2017; Gould et al., 2013; Spaete et al., 2011). The dense
understory of the canopy height classes of SSS and tree-
less areas, which comprise approximately 74 % of CPCRW
(Fig. 3), prevents lidar laser pulses from reaching and accu-
rately mapping the ground surface. During snow-on acqui-
sition dense ground vegetation could further introduce error
into the snow-on DTM by compacting beneath the snowpack
or elevating snow on top of dense vegetation. Errors in both
snow-free and snow-on DTMs caused by the dense under-
story can lead to a less accurate snow depth map, which in
turn affects the correlation between ground-based and lidar-
derived snow depth measurements.

In addition to the dense understory, further explanations
for a low R? value could include sampling restrictions and
spatial scale. Ground-based snow depth measurements were
clustered together and occurred at lower elevations as a re-
sult of difficult terrain and limited access within the study
site. The magnaprobe GPS units have a horizontal position-
ing error of £2.5m in open areas and 10-15m in dense
forest, which could impact the correlation of ground-based
snow depths with collocated lidar-derived snow depths. Ef-
forts to minimize positioning errors involved taking ground-
based measurements approximately 1-3 m apart, followed by
visually inspecting the measurement pattern for outliers and
ensuring alignment with a road or a trail. Lastly, snow depth
variability at the sub-meter scale could be influencing the
low R? values when we compare a single magnaprobe mea-
surement to its collocated lidar pixel. During the March 2022
SnowEx field campaign, evidence of snow depth variability
over a single meter of distance was repeatedly seen in all
vegetation types while taking ground-based measurements.
Tussocks, understory brush, downfall, and the snowpack it-
self all impacted snow depths within a meter. Ground-based
snow depth variability observed on a sub-meter scale, in all
three canopy height classes, supports the calculated semivar-
iogram range of 1.0 m for spatial autocorrelation.

While sub-meter snow depth variability can be high (Ko-
marov and Sturm, 2023), we found that when comparing
snow depth variability at the watershed scale, all ground-
based, lidar, and canopy height mean snow depths fell within
1 standard deviation of each other, which represents 10 %—
16 % of the mean snow depth (Table 3). Results from an
analysis performed using ground-based and airborne lidar
data from the March 2023 SnowEx Alaska campaign for
this study site found similar statistical results (16 %—18 % of
mean snow depth). This provides evidence of consistently
lower variability in snow depths at the mesoscale over two
snowpack years at CPCRW.
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5.2 Implications for water and resource management

Water and resource managers use snow data, including snow
depth and SWE, to assess the availability of water resources
in regions dependent on snowmelt (Dickerson-Lange et al.,
2021; Siirila-Woodburn et al., 2021). Our study site had
a mean lidar snow depth of 98 cm, which is equivalent to
approximately 210 mm of SWE. When comparing median
snow depths our analysis showed a statistically significant
difference in median snow depths between all canopy height
classes, with differences in snow depths, based on canopy
height, equivalent to an SWE range of roughly 20-30 mm.
This information can be utilized by water and resource man-
agers to make informed decisions about water supply, flood
control, evaluating the impact of climate change on precip-
itation and snow accumulation/melt patterns, land use de-
cisions, and wildlife and conservation efforts (Dickerson-
Lange et al., 2021; Hopkinson et al., 2004; Mazzotti et al.,
2019; Reinking et al., 2022; Webb et al., 2020).

Snow data obtained through various platforms, including
ground-based, aircraft, satellite, or estimated through model-
ing tools, can be incorporated together to produce more accu-
rate and sophisticated spatiotemporal snow distribution esti-
mations than are possible with any single measurement tech-
nique performed alone (Boelman et al., 2019; Stuefer et al.,
2013). Our study used ground-based measurements to vali-
date an airborne lidar snow depth map in a boreal forest eco-
type. As evidenced in Table 6, only one additional study that
compared ground-based measurements to airborne lidar oc-
curred within a boreal forest site. The comparison of ground-
based measurements to airborne lidar by Dharmadasa et al.
(2022) produced an RMSE of 19-22 cm at their boreal forest
site. Our study produced an RMSE of 12.5 cm when validat-
ing airborne lidar with ground-based snow depth measure-
ments. Validated lidar snow depth maps have advanced our
ability to characterize the spatial variability in snow depths at
a watershed scale and, when coupled with an airborne lidar
canopy height map, can be applied to snow and hydrologi-
cal modeling applications to improve hydrological forecasts
and SWE estimates at even larger regional or global scales
(Deems et al., 2013; Hopkinson et al., 2004, 2012; Jacobs
et al., 2021; Nolan et al., 2015; Painter et al., 2016; Trujillo
et al., 2007). To further improve validated lidar snow depth
maps, future snow research occurring in boreal forests should
include snowpack profile measurements that could be used
to identify and quantify vegetation-induced errors in ground-
based measurement techniques and airborne lidar data prod-
ucts associated with the complicated and dense boreal forest
understory.

Accurately accounting for vegetation effects on snow stor-
age and distribution is important as forests are changing due
to warming climate conditions, forest disturbances, wildfires,
insect infestation, and permafrost degradation (Panda et al.,
2010; Smith et al., 2021). These changes are occurring in bo-
real forests, but research is limited as to how Alaska boreal
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Table 6. Studies that compare lidar-derived snow depths with manual snow depth measurements are listed in the table. Information on
location, land cover type, manual and lidar snow depth means, and error statistics are provided for each study.

Study Location Land cover HS mean (cm) RMSE (cm) R?
Broxton et al., 2015 Colorado and Forest/canopy cover CO: mean 63 (manual) 0.01-0.33
New Mexico mean 74.8 (modeled)

NM: mean 88 (manual)

mean 93 (modeled)
Broxton et al., 2019 Central Arizona Forest Mean 44-49 (manual) 9.1-18.7 0.85-0.91
Currier et al., 2019 Grand Mesa, CO Forest Manual mean 6 cm greater 8

than lidar mean
Dharmadasa et al., Southern Quebec Forest/boreal forest Mean 32-140 (manual) 7.9-22
2022
Harpold et al., 2014 California, Colorado, Forest/alpine Mean 0-274 (manual) 7-31 0.97

New Mexico Mean 7-222 (lidar)

Hopkinson et al., Southern Ontario, Forest Mean 42 (manual) 0.52
2004 Canada
Hopkinson et al., Southern Alberta, Forest/canopy cover Mean 54 (manual) 0.74
2012 Canada Mean 60 (lidar)
Jacobs et al., 2021 New Hampshire Mixed hardwood forest Mean 15.2 (manual) 10.5

Mean 7.8 (lidar)
Koutantou et al., Swiss Alps Forest 5-21 0.6-0.8
2022
Tinkham et al., 2014  Southwest Idaho Forest/shrub Mean 114 (manual) 14-38

Lidar mean 5-7 cm greater

than manual
Our study Fairbanks, Alaska Boreal forest Mean 88 (manual) 12.5 0.012

Mean 98 (lidar)

forest vegetation impacts snow distribution. A literature re-
view found one study occurring in an Alaska boreal forest,
by Douglas and Zhang (2021), that looked at vegetation im-
pacts on snow storage using lidar and machine learning. They
found that in their Alaska boreal forest sites mixed forest
ecotypes had the shallowest snowpack, while tussock tundra
(equivalent to our treeless) and moss spruce forest (equiv-
alent to our SSS) were associated with the deepest snow-
pack. The results of our vegetation analysis show that canopy
height has a statistically significant effect on the spatial vari-
ability of snow depths at our study site. The canopy height
pairs of SSS and forest as well as treeless and forest had
snow depth differences that fell outside the lidar error range
for all three spatial subsets and differed in SWE by 10 mm.
The canopy height pair of treeless and SSS yielded results
that fell within the lidar error range for all three spatial sub-
sets, making it difficult to clearly attribute snow depth vari-
ability between the two classes to vegetation or lidar accu-
racy. This result implies that there is less variability in snow
depths between treeless and SSS canopy height classifica-
tions. In terms of canopy height classification, two canopy
height classes of less than 5 m and greater than 5 m could be
sufficient to quantify the mean snow depths in CPCRW.

The Cryosphere, 19, 3477-3492, 2025

6 Conclusion

Despite considerable literature on airborne lidar snow depth
retrievals in forested environments, little research has been
published on its ability to measure snow depth in boreal
forests. We demonstrate the utility of a high-resolution air-
borne lidar snow depth map to characterize the spatial vari-
ability of snow depths within a boreal forest study site where
snow remote sensing research is limited. The validation ef-
forts showed that lidar-derived snow depths had an RMSE of
12.0cm and a bias of 2.0 cm when compared to data from
2114 ground-based field measurements. While these results
show a statistically significant relationship between lidar-
derived snow depths and manual field measurements, errors
and uncertainties caused by dense understory vegetation need
to be considered with detailed snowpack profile measure-
ments. We further demonstrate that an airborne lidar canopy
height map can be used to analyze the impact of vegetation
on snow depth variability in a complex boreal forest ecosys-
tem and that two canopy height classes may be sufficient to
characterize the snow depth spatial variability therein.
Lastly, we show that snow depth variability between sub-
basins within CPCRW, and at the watershed scale, is 10 %—
16 % of the mean snow depth. This is evidenced by all mean
snow depths (ground-based, lidar, canopy height class, sub-
basins, and overall) occurring within 1 standard deviation
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of each other. This study demonstrates that airborne lidar-
derived data products can effectively estimate and quantify
the variability of snow depths in an Alaska boreal forest but
should be validated and assessed for vegetative errors using
ground-based measurements.
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