Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3381-2025
https://doi.org/10.5194/tc-19-3381-2025
Research article
 | 
27 Aug 2025
Research article |  | 27 Aug 2025

Finely resolved along-track wave attenuation estimates in the Antarctic marginal ice zone from ICESat-2

Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin

Data sets

Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2 A. Fraser et al. https://doi.org/10.26179/q9pe-w283

Download
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2, we observe an overall linear increase in the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modeling of waves in sea ice at global and climate scales when such fine detail may not be needed.
Share