Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leveraging snow probe data, lidar, and machine learning for snow depth estimation in complex-terrain environments
Dane Liljestrand
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
Ryan Johnson
Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
Bethany Neilson
Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
Patrick Strong
Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
Elizabeth Cotter
Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
Related authors
Mihai O. Cimpoiasu, Oliver Kuras, Harry Harrison, Paul B. Wilkinson, Philip Meldrum, Jonathan E. Chambers, Dane Liljestrand, Carlos Oroza, Steven K. Schmidt, Pacifica Sommers, Lara Vimercati, Trevor P. Irons, Zhou Lyu, Adam Solon, and James A. Bradley
The Cryosphere, 19, 401–421, https://doi.org/10.5194/tc-19-401-2025, https://doi.org/10.5194/tc-19-401-2025, 2025
Short summary
Short summary
Young Arctic sediments, uncovered by retreating glaciers, are in continuous development, shaped by how water infiltrates and is stored in the near subsurface. Harsh weather conditions at high latitudes make direct observation of these environments very difficult. To address this, we deployed two automated sensor installations in August 2021 on a glacier forefield in Svalbard. These sensors recorded continuously for 1 year, revealing unprecedented images of the ground’s freeze–thaw transition.
Ethan Ritchie, Andrew W. Wood, Ryan Johnson, Adrienne Marshall, Josh Sturtevant, Dane Liljestrand, and Emily Golitzin
EGUsphere, https://doi.org/10.5194/egusphere-2025-5514, https://doi.org/10.5194/egusphere-2025-5514, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Snow water equivalent (SWE) is a critical water resource to many regions globally. Estimating SWE remains a challenge in hydrology highlighting the need for consistent evaluation frameworks. This study applied a standard approach for SWE evaluation across a range of datasets in the western US, using the Airborne Snow Observatory (ASO) SWE dataset as the reference observational dataset. We outline and demonstrate an example of a community evaluation protocol using datasets in this study.
Mihai O. Cimpoiasu, Oliver Kuras, Harry Harrison, Paul B. Wilkinson, Philip Meldrum, Jonathan E. Chambers, Dane Liljestrand, Carlos Oroza, Steven K. Schmidt, Pacifica Sommers, Lara Vimercati, Trevor P. Irons, Zhou Lyu, Adam Solon, and James A. Bradley
The Cryosphere, 19, 401–421, https://doi.org/10.5194/tc-19-401-2025, https://doi.org/10.5194/tc-19-401-2025, 2025
Short summary
Short summary
Young Arctic sediments, uncovered by retreating glaciers, are in continuous development, shaped by how water infiltrates and is stored in the near subsurface. Harsh weather conditions at high latitudes make direct observation of these environments very difficult. To address this, we deployed two automated sensor installations in August 2021 on a glacier forefield in Svalbard. These sensors recorded continuously for 1 year, revealing unprecedented images of the ground’s freeze–thaw transition.
Cited articles
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Scientific Data, 5, 1–15, 2018. a
Anderton, S., White, S., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, 2004. a
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. a
Barrett, A.: National Operational Hydrologic Remote Sensing Center SNOw Data Assimiliation System (SNODAS) products at NSIDC, National Snow and Ice Data Center, Boulder, Special Report 11, 19, 2003. a
CAIC: Colorado Avalanche Information Center Statistics and Reporting, https://avalanche.state.co.us/accidents/statistics-and-reporting (last access: 28 December 2022), 2022. a
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011. a
Collados-Lara, A.-J., Pardo-Igúzquiza, E., and Pulido-Velazquez, D.: Spatiotemporal estimation of snow depth using point data from snow stakes, digital terrain models, and satellite data, Hydrol. Process., 31, 1966–1982, 2017. a
Collados-Lara, A.-J., Pardo-Igúzquiza, E., and Pulido-Velazquez, D.: Optimal design of snow stake networks to estimate snow depth in an alpine mountain range, Hydrol. Process., 34, 82–95, 2020. a
Conover, W. J.: Practical nonparametric statistics, vol. 350, John Wiley & Sons, ISBN 978-0-471-16068-7, 1999. a
Crumley, R. L., Hill, D. F., Wikstrom Jones, K., Wolken, G. J., Arendt, A. A., Aragon, C. M., Cosgrove, C., and Community Snow Observations Participants: Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations, Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, 2021. a
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: a review, J. Glaciol., 59, 467–479, 2013. a
Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39, 1–22, 1977. a
Dover, J. H.: Geologic Map of the Logan 30'× 60'Quadrangle, Cache and Rich Counties Utah, and Lincoln and Uinta Counties, Wyoming, US Geological Survey, https://doi.org/10.3133/i2210, 1995. a
Fassnacht, S., Dressler, K., and Bales, R.: Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resour. Res., 39, 1208, https://doi.org/10.1029/2002WR001512, 2003. a
Galeati, G., Rossi, G., Pini, G., and Zilli, G.: Optimization of a snow network by multivariate statistical analysis, Hydrolog. Sci. J., 31, 93–108, 1986. a
Grünewald, T., Bühler, Y., and Lehning, M.: Elevation dependency of mountain snow depth, The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, 2014. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016. a
Herbert, J. N., Raleigh, M. S., and Small, E. E.: Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data, The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, 2024. a
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, 2009. a
Kerkez, B., Glaser, S. D., Bales, R. C., and Meadows, M. W.: Design and performance of a wireless sensor network for catchment-scale snow and soil moisture measurements, Water Resour. Res., 48, W09515, https://doi.org/10.1029/2011WR011214, 2012. a
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a
Liljestrand, D., Neilson, B., and Oroza, C.: Franklin Basin, UT, USA Snow-On LiDAR, HydroShare [data set], https://doi.org/10.4211/hs.34ce22e4df10463cb053bb63d19d6672, 2023. a
López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J. B. P.: Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies, The Cryosphere, 5, 617–629, https://doi.org/10.5194/tc-5-617-2011, 2011. a
Lundquist, J. D., Dettinger, M. D., and Cayan, D. R.: Snow-fed streamflow timing at different basin scales: Case study of the Tuolumne River above Hetch Hetchy, Yosemite, California, Water Resour. Res. 41, W07005, https://doi.org/10.1029/2004WR003933, 2005. a
Maggioni, M. and Gruber, U.: The influence of topographic parameters on avalanche release dimension and frequency, Cold Reg. Sci. Technol., 37, 407–419, 2003. a
Meromy, L., Molotch, N. P., Link, T. E., Fassnacht, S. R., and Rice, R.: Subgrid variability of snow water equivalent at operational snow stations in the western USA, Hydrol. Process., 27, 2383–2400, 2013. a
Molotch, N. P. and Bales, R. C.: Scaling snow observations from the point to the grid element: Implications for observation network design, Water Resour. Res., 41, W11421, https://doi.org/10.1029/2005WR004229, 2005. a
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–50, 2005. a
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US, Npj Climate and Atmospheric Science, 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018. a
Neilson, B. T., Strong, P., and Horsburgh, J. S.: State of the Logan River Watershed. Utah Water Research Laboratory, Utah State University, Logan, Utah, USA, https://uwrl.usu.edu/files/pdf/2020-21-lro-annual-report.pdf (last access: 11 August 2025), 2021. a
NRCS: SNOwpack TELemetry Network (SNOTEL), https://data.nal.usda.gov/dataset/snowpack-telemetry-network-snotel (last access: 28 June 2022), 2022. a
Ohara, N., Parsekian, A. D., Jones, B. M., Rangel, R. C., Hinkel, K. M., and Perdigão, R. A. P.: Characterization of non-Gaussianity in the snow distributions of various landscapes, The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, 2024. a, b
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., and Mattmann, C.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, 2016. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas, J.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Reynolds, D. S., Pflug, J. M., and Lundquist, J. D.: Evaluating wind fields for use in basin-scale distributed snow models, Water Resour. Res., 57, e2020WR028536, https://doi.org/10.1029/2020WR028536, 2021. a
Roe, G. H. and Baker, M. B.: Microphysical and geometrical controls on the pattern of orographic precipitation, J. Atmos. Sci., 63, 861–880, 2006. a
Rutgers University Global Snow Lab, G.: Snow Cover Extent and Rankings, https://climate.rutgers.edu/snowcover/table_rankings.php?ui_set=1#us (last access: 1 October 2023), 2023. a
Saghafian, B., Davtalab, R., Rafieeinasab, A., and Ghanbarpour, M. R.: An integrated approach for site selection of snow measurement stations, Water, 8, 539, https://doi.org/10.3390/w8110539, 2016. a
Schweizer, J. and Lütschg, M.: Characteristics of human-triggered avalanches, Cold Reg. Sci. Technol., 33, 147–162, 2001. a
Sturm, M. and Liston, G. E.: Revisiting the global seasonal snow classification: An updated dataset for earth system applications, J. Hydrometeorol., 22, 2917–2938, 2021. a
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth data and climate classes, J. Hydrometeorol., 11, 1380–1394, 2010. a
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A trillion dollar science question, Water Resour. Res., 53, 3534–3544, 2017. a
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.: Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. a
Welch, S. C., Kerkez, B., Bales, R. C., Glaser, S. D., Rittger, K., and Rice, R. R.: Sensor placement strategies for snow water equivalent (SWE) estimation in the American River basin, Water Resour. Res., 49, 891–903, 2013. a
Western Regional Climate Center: Monthly Prevailing Wind Direction Tables, https://wrcc.dri.edu/Climate/comp_table_show.php?stype=wind_dir_avg, last access: 28 June 2022. a
Williams, C. K. and Rasmussen, C. E.: Gaussian processes for machine learning, vol. 2, MIT press Cambridge, MA, ISBN 026218253X, 2006. a
Winstral, A., Elder, K., and Davis, R. E.: Spatial snow modeling of wind-redistributed snow using terrain-based parameters, J. Hydrometeorol., 3, 524–538, 2002. a
Short summary
This work introduces a model specifically designed for high-resolution snow depth estimation, leveraging in situ snow observations and snow-off lidar terrain features to provide an accessible and cost-effective method for snowpack modeling in regions lacking high-quality data products or collection networks. This work demonstrates that reliable basin-scale snow depth estimates can be achieved in difficult environments with very few observations and low institutional costs.
This work introduces a model specifically designed for high-resolution snow depth estimation,...