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Abstract. The majority of the water supply for many western
US states is derived from seasonal snowmelt in mountainous
regions. This study aims to generate basin-scale snow depth
estimates using a multistep, Gaussian-based machine learn-
ing model that combines snow probe depth measurements
with static lidar terrain features from a single snow-free date,
enabling rapid, high-resolution estimation at low institutional
cost. We focus on reducing personnel danger by modifying
the algorithm to minimize the exposure of field sample col-
lectors to avalanche-prone terrain. Using snow observations
taken solely within a subbasin (~9km?) of a larger basin
(~70km?), a basin-scale snow depth estimate is modeled for
a given date throughout the snow season. Results show that a
small number of observations (i.e., 10) within a subbasin can
realize snow depth across the greater basin with high accu-
racy, with a root mean squared error (RMSE) of 0.37 m and
Kling—Gupta efficiency (KGE) of 0.59 when compared to li-
dar snow depth distribution. We test the universality of the al-
gorithm by modeling multiple subbasins of differing spatial
characteristics and find similar results. The algorithm shows
consistent performance across subbasins with varying spa-
tial characteristics and maintains accuracy even when high-
risk avalanche areas are excluded from the training data. This
method exhibits a potential for citizen-scientist data to safely
provide gridded modeled snow depth across different spatial
ranges in snow-covered basins.

1 Introduction

Seasonal snow-derived water is a critical component of the
water supply in mountainous basins and connected down-
stream regions (Painter et al., 2016; Bales et al., 2006). More
than one-sixth of the world’s population is in a region where
snowmelt accounts for at least 50 % of the annual runoff
(Barnett et al., 2005). In the western United States, where
the economic value of the yearly snowpack has been esti-
mated to be on the order of a trillion US dollars (Sturm et al.,
2017), many states’ water supply is nearly entirely depen-
dent on mountain snowpack. Climate variability is pressur-
ing this water supply, and over the last century, much of the
West has observed decreasing available water from snow, and
more rapidly over the past 20 years (Mote et al., 2005, 2018).

Increasing populations and changing climate dynamics
outline the crucial endeavor of accurately measuring avail-
able seasonal snow for water resource management. Ac-
knowledging this need, the US Natural Resource Conser-
vation Service has installed and operates nearly 900 snow
telemetry (SNOTEL) in situ monitoring sites throughout
the western US (NRCS, 2022). These stations maintain the
largest near-instantaneous monitoring network of snow depth
and other environmental variables, forming the foundation
for many water resource management forecasts throughout
the country. Despite the broad network, the full spatial repre-
sentation of mountainous regions remains a problem. Within
the contiguous US, there is, on average, one SNOTEL site
per approximately 4000 km? of potential snow-covered area
(Rutgers University Global Snow Lab, 2023). The low den-
sity of sites highlights the need for additional observations or
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techniques to produce an accurate and continuous snowpack
estimate.

Accurately representing basin-scale (30-200 km?) snow-
pack is challenging due to scale and geographic heterogene-
ity. A single basin can exhibit broad slope, elevation, and land
cover differences, all influencing snow distribution. While
SNOTEL serves as the largest in situ dataset in the US,
studies have found that station measurements often did not
align with mean values from surrounding areas and vary in
their broader accuracy during accumulation and melt seasons
(Molotch and Bales, 2005; Lundquist et al., 2005; Meromy
et al., 2013; Herbert et al., 2024). Heterogeneity in snow-
pack arises from interactions between the landscape features,
wind, and forest canopy, among other factors, with vary-
ing effects across scales (Clark et al., 2011). While small-
scale processes like wind and radiative fluxes dominate at
the hillslope scale (1-100m), elevation becomes crucial at
larger scales. Often, snow depth may be well-represented by
a Gaussian distribution. However, the distribution is com-
monly skewed during accumulation and melt periods, in
wind-affected terrain, or when no-snow areas are present, and
a static probability density should not always be assumed (He
et al., 2019; Ohara et al., 2024). The multitude of factors af-
fecting snow depth at varying scales make it challenging to
universally identify the most relevant features for accurate
snow depth estimation and complicate representative sam-
pling.

When attempting to quantify a snowpack through mea-
surement locations — whether for permanent instrumentation
or one-time sampling — it is important to optimize the place-
ment to represent various physical features effectively. Pi-
oneering work on optimizing snow measurement networks
was performed by Galeati et al. (1986), who applied a multi-
variate statistical methodology with the aim of selecting a re-
duced number of monitoring stations within the Italian Alps
monitoring network. The study applied a clustering tech-
nique on station observations and performed principal com-
ponent analysis to determine insignificant or redundant sta-
tions. Their results showed that 30 % of the network stations
could be removed and suitably replaced with observations
from neighboring stations.

While early studies focused on optimizing existing net-
works, recent research has enhanced network efficiency by
optimizing measurement locations before installation. These
studies have shown that fewer, strategically placed sen-
sors can reduce modeled snow error in a relatively small,
monitored catchment (Collados-Lara et al., 2020; Kerkez
et al., 2012; Lopez-Moreno et al., 2011; Oroza et al., 2016;
Saghafian et al., 2016; Welch et al., 2013). Despite these ad-
vancements, challenges remain in the resource-intensive task
of physically locating and installing measurement stations, as
well as the fact that static locations may not be ideal through-
out different phases of the snow cycle. Additionally, the rep-
resentativeness of point measurements over larger areas re-
mains uncertain, and the extent to which these measurements
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accurately reflect snowpack conditions beyond their immedi-
ate vicinity is unknown.

Remote sensing products such as the Snow Data Assim-
ilation System (SNODAS) offer an alternative to ground-
based measurement networks by providing snowpack esti-
mates over large areas using a combination of ground-based,
airborne, and satellite observations (Barrett, 2003). However,
SNODAS and similar products have their limitations, includ-
ing a relatively coarse spatial resolution (1km), which can
miss fine-scale variability in snow depth, and inaccuracies
in complex terrains or densely forested areas where ground-
based observations are sparse (Clow et al., 2012).

Aerial light detection and ranging (lidar) has improved
the feasibility of high-resolution capture of snow depth data
without relying on ground-based measurement stations and
the spatial constraints of traditional remote sensing prod-
ucts. By subtracting a baseline snow-free DEM from a lidar-
derived snow-on DEM, the resulting difference between the
two precisely measures the snow depth across the surveyed
area (Deems et al., 2013). While lidar is particularly effec-
tive in regions with deeper, uniform snowpack, it has limita-
tions, and performance diminishes under canopy interactions
and in shallower snow regions (Harder et al., 2016). The fi-
nancial costs of lidar instrumentation and acquisition, espe-
cially for repeat or large-area surveys, also pose a significant
constraint. Additionally, flying during adverse weather con-
ditions makes monitoring snowpack changes throughout the
season difficult. By contrast, lidar surveys of snow-free ter-
rain, which are less temporally constrained, can be conducted
during the non-snow season to capture static surface features.
To enhance the accuracy of regional snowpack estimates,
physiographic surface data from snow-free lidar scans can be
combined with on-ground point measurements of snow. This
technique integrates the detailed localized data from ground
observations with the broad coverage offered by lidar. When
optimally located, the point measurements may help refine
snow depth estimates and improve the overall understanding
of snowpack variability (Oroza et al., 2016).

An increasing number of recreationists and citizen sci-
entists in remote snow-covered environments provides op-
portunities for numerous low-institutional-cost point mea-
surements across different spatial and temporal ranges. On-
ground snow depth data reported by such users via a mo-
bile app platform (details at communitysnowobs.org) pro-
vide a novel data source for scientists and water managers to
supplement higher-cost collection methods (Crumley et al.,
2021). However, access to remote sampling locations often
can require a researcher or recreationist to travel in, under, or
above avalanche terrain, exposing them to a potentially fatal
outcome (CAIC, 2022). Nearly all avalanche fatalities occur
in remote, uncontrolled terrain, with the majority occurring
from individuals caught in a self-triggered avalanche or one
caused by another member of their group (Techel et al., 2016;
Schweizer and Liitschg, 2001). Thus, it is imperative to de-
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velop sampling methods in remote regions that address and
protect the safety of the individuals collecting data.

For snow sampling and modeling, snow water equivalent
(SWE) is the most critical variable for predicting runoff and
downstream hydrological processes (Clow et al., 2012). Be-
cause SWE is a function of both snow depth and density, im-
proved estimates of either parameter can enhance SWE ac-
curacy. Of these, snow depth is more readily and repeatedly
measured during single-day field surveys and is also the pri-
mary variable captured by lidar. In contrast, snow density is
more difficult to measure and requires more time and effort.
Where available, snow surveys provide in situ point estimates
of snow density, while parameterized models or generalized
classifications provide more spatially extensive estimates. By
combining high-resolution snow depth data with modeled or
interpolated density values, researchers may generate more
accurate spatial SWE estimates (Jonas et al., 2009; Sturm
et al., 2010; Sturm and Liston, 2021).

In this study, we utilize a multistep, Gaussian-based ma-
chine learning model to investigate the feasibility of generat-
ing rapid, high-resolution, basin-scale snow depth estimates
by combining snow probe depth observations with (static) li-
dar terrain features with a built-in reduction in personnel dan-
ger from avalanche exposure. Within this work, we address
three main objectives: (i) validate the model’s universality
by sampling separate subbasins with differing spatial charac-
teristics using a limited number of in situ measurements to
estimate snow depth and evaluate the performance in varied,
complex terrain; (ii) investigate the accuracy of basin-scale
estimation beyond a smaller sampling domain with sparse
sampling locations both within and outside of the modeled
basin; and (iii) determine if estimation accuracy is affected
by the exclusion of high-avalanche-risk terrain when select-
ing measurement locations.

2 Materials and methods
2.1 Study area description

We focus our study on the Franklin Basin region at the Utah—
Idaho border, which encompasses the headwaters of the Lo-
gan River and its upper tributaries. The Logan River supplies
the major population of the Cache Valley, with an average
annual flow of approximately 6.5m?>s~! at the mouth of the
canyon and a snowmelt-dominated hydrograph that deliv-
ers peak flow in the spring (Neilson et al., 2020). The lim-
its of the study span an area within the Bear River Range
of the greater Western Rocky Mountains (Fig. 1). The study
basin’s elevation ranges from 2115 to 2940 m, with a mean
of 2530 m, and it is predominantly easterly facing. It is veg-
etated primarily with forest, range land, and alpine environ-
ments at upper elevations. The geology of the basin is charac-
terized primarily by limestone and dolomite (Dover, 1995).
Little development exists within this region, with the pri-
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mary infrastructure consisting of a local ski resort, forest ac-
cess roads, and seasonal homes. We select three subbasins
to study and compare with the overall extent of Franklin
Basin: Hell’s Kitchen Canyon, which neighbors the larger
basin to the south, and Boss Canyon and Peterson Hollow,
both located centrally within Franklin Basin. All three sub-
watersheds drain to the Logan River.

Hell’s Kitchen Canyon is the southernmost subbasin in the
study area and a popular recreation area throughout winter
and summer. It has the lowest elevation of the three sub-
basin study areas (Table 1). Aspects are mainly northerly,
southerly, and easterly facing, with an overall east-facing as-
pect. A small area to the east of the canyon watershed is
included in the study area to include more westerly facing
aspects during sampling and model training (Fig. 1). The
Boss Canyon subbasin is located north of Hell’s Kitchen
Canyon, with mainly northerly, southerly, and easterly fac-
ing aspects, and is an east-facing catchment. Peterson Hollow
is a lower-elevation catchment within the region and a pre-
dominately southerly facing drainage. Vegetation variation
is similar across all subbasins, with each area predominately
consisting of forested evergreen, aspen, shrubland, and open-
range areas. The furthest western areas of Boss Canyon and
Franklin Basin contain high-elevation, steep, sparsely veg-
etated slopes on the eastern aspect of the Wasatch Range
Ridge.

2.2 Data collection and preprocessing

We collected snow-free lidar data of the Franklin Basin in the
fall of 2020. The collection was performed with an Optech
Galaxy T2000 and Prime on board a small aircraft at an al-
titude of 1300 m. An average flight density of 10.1 points
per square meter was captured with a stated sensor abso-
lute vertical accuracy of <0.03-0.25m RMSE from 150-
6000 m above ground level. The data are referenced to the
NAVD88 and NAD83 vertical and horizontal datums and re-
projected from State Plane Utah North to the WGS 84/UTM
Zone 12 coordinate system. We derived digital elevation
model (DEM) and digital surface model (DSM) rasters from
the obtained lidar and upscaled the resolution from its native
resolution of 1.5 to a 50m grid cell size with bi-linear in-
terpolation to reduce computational demand (Table 2). The
rasters for Hell’s Kitchen Canyon were not upscaled, as this
subbasin served as the field measurement boundary, requir-
ing higher resolution to accurately guide samplers to pre-
cise sampling locations. The distribution of snow depth in
the basin follows an approximately Gaussian distribution
(Fig. 3), with a mean and standard deviation very close to
a theoretical Gaussian distribution and a low Kolmogorov—
Smirnov statistic (Eq. 10) of 0.06.

We then extracted the physiographic parameters of slope,
aspect, and canopy height (Fig. 2). We combine the slope and
aspect grid values to calculate northness and eastness metrics
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Figure 1. Map of the Franklin Basin study area extents and elevation and the Boss Canyon, Peterson Hollow, and Hell’s Kitchen Canyon
subject subbasins in northern Utah and southern Idaho, US (inset map: ESRI).

Table 1. Topographic statistics of the four study areas.

Domain Area Minel. Maxel. Meanel. % Avalanche

(kmz) (m) terrain

Franklin Basin 72 2115 2940 2530 5.2

Hell’s Kitchen Canyon 8.9 2077 2830 2400 9.7

Boss Canyon 7.7 2320 2935 2613 11.6

Peterson Hollow 9.3 2164 2806 2520 2.3
with the equation For each cell in the raster, a search distance of 100 m of the
DEM in the northerly direction — the prevailing wind direc-
northness = sin(slope) - cos(aspect) tion in the region — was applied (Western Regional Climate
eastness = sin(slope) - sin(aspect). 1) Center, 2022, 2022). As a final preprocessing step, we nor-

The values of northness and eastness both range from —1 to
1. In the northern hemisphere, a northness value of —1 cor-
responds to a steep, southerly facing slope, while a value of
1 indicates a steep, northerly facing slope. Similarly, an east-
ness value of —1 corresponds to a steep, west-facing slope,
and a value of 1 corresponds to a steep, east-facing slope
(Collados-Lara et al., 2017; Fassnacht et al., 2003). Both
northness and eastness can be interpreted as proxies for ex-
posure to solar radiation (Amatulli et al., 2018).

We derive a wind shelter metric for the study domains ac-
cording to the method of Winstral et al. (2002), quantifying
the degree of shelter/exposure provided by upwind terrain.

The Cryosphere, 19, 3123-3138, 2025

malize the physiographic features from O to 1 with a min-max
scaler to improve the stability of the model during learning.
To identify avalanche-prone terrain in the region, we in-
spect the average slope angle of each raster cell. Cells with
a slope angle of 30° or greater are defined as having poten-
tial avalanche risk. For slopes below 30°, gravitational forces
lack the strength to initiate a slide avalanche, so we con-
sider these areas non-avalanche-prone (Maggioni and Gru-
ber, 2003). The potential for avalanches to trigger on adja-
cent slopes or to progress to slopes below 30° exists; how-
ever, this was not included in our terrain assessment. From
the classification, we create two data frames for the feature
space — one includes all-terrain cells, and the other excludes
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Table 2. Metadata summary of snow depth and terrain datasets. In Franklin Basin, Boss Canyon, and Peterson Hollow, raster data were
upscaled to improve computational efficiency. Hell’s Kitchen Canyon raster data were maintained at 1.5 m for accurate locating of physical

sampling locations.

Dataset Source Resolution

Coverage

lidar snow depth Airborne lidar

1.5m (raw), 50 m (upscaled)

Franklin Basin, Boss Canyon, Peterson Hollow

DEM & DSM Airborne lidar 50 m (upscaled) Franklin Basin, Boss Canyon, Peterson Hollow
In situ snow depth  Manual probes  Point-based (10 sites) Hell’s Kitchen Canyon
DEM & DSM Airborne lidar  1.5m Hell’s Kitchen Canyon
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Figure 2. Cumulative distributions of the physiographic features for each region domain. FB indicates Franklin Basin, BC denotes Boss

Canyon, PH denotes Peterson Hollow, and HK denotes Hell’s Kitchen.

cells marked as avalanche-prone — allowing us to compare
them during model evaluation.

On 28 March 2021, near the end of the accumulation sea-
son, the flight crew collected snow-on lidar data for Franklin
Basin with the same instrumentation as the snow-free lidar.
With the collected lidar, we developed a snow depth TIFF for
the basin by raster subtracting the bare-earth DEM from the
snow-on DEM. The result is a normally distributed snowpack
across the basin, with a mean depth of 1.28 m and a standard
deviation of 0.44 m. Due to flight pattern constraints, snow-
on lidar was not captured for the Hell’s Kitchen area. The
Franklin Basin, Boss Canyon, and Peterson Hollow raster
resolutions were upscaled to 50 m to reduce the computation
time. In comparison, the Hell’s Kitchen Canyon bare-earth
DEM was maintained at a 1.5m resolution to provide de-
tailed locations for the physical sampling.

2.3 Optimal measurement location identification

To optimally identify field sampling locations to produce
snow depth estimates, we apply a multistep, Gaussian-based
machine learning algorithm (Fig. 4). The framework builds
on previous work, which found the algorithm successful in
capturing snow depth variability within a basin with a small
number of optimized sensors (Oroza et al., 2016). Our proce-
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dure involves using an unsupervised Gaussian mixture model
(GMM) to identify sampling locations within Franklin Basin
and its subbasins that best represent the region’s physio-
graphic composition based on snow-free topographic fea-
tures (DEM elevation, northness, eastness, canopy height,
and wind shelter). Unsupervised learning, like the GMM, re-
quires no dependent variable input to identify these represen-
tative data points.

The GMM is a probabilistic model that characterizes the
feature space as a composition of several Gaussian dis-
tributed clusters, K, with mixing coefficients 7 such that

K
Z(rrk) =1. (2)
k=1

Each cluster is defined by a Gaussian density function (Eq. 3)
of D dimensions, expected value, w, and covariance, o,
where x represents the snow depth. The multivariate distri-
bution is expressed as

N x| p,0)

1 1 T 1
=W6XP —E(X—M) o (x—w ). O

The optimal p and o parameters for a given distribution
can be found by taking the log of Eq. (3), differentiating,
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Figure 3. Map and corresponding density distribution of the lidar-
measured snow depth in Franklin Basin. The violin distribution of
the snow depth is overlaid above a Gaussian distribution of 20 000
randomly generated samples to express the near-normality of the
snow depth distribution. Quartiles of the snow depth are shown
as bold hashed lines, and the light-gray hashed lines represent the
Gaussian distribution quartiles.

and equating it to zero. For multiple Gaussian distributions,
optimal parameters are determined by maximizing the log-
likelihood of all components over the entire feature space for
a range of points, N. The log-likelihood of the GMM is de-
fined as

N K
InpX)=Y InY 1N (X | i, 00 “)

n=1 k=1

We used the open-source Scikit-Learn Python library to
execute the Gaussian mixture-based multistep optimization
model (Pedregosa et al., 2011). To locate the optimal pa-
rameters for the dataset, the GMM employs the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977), given
a specified number of clusters. The EM algorithm iteratively
adjusts parameters for the mixture of components until it ar-
rives at a maximization of the log-likelihood function, thus
defining the most representative feature points within the
dataset. To avoid convergence on local maxima, we run a
grid search of randomized algorithm initializations with ei-
ther 10 or 50 restarts to select the result that maximizes the
log-marginal likelihood. We calculate with a spherical co-
variance kernel from a random seed of initial cluster origins
and subsample 80 % of the domain for computational effi-
ciency.

We defined the total number of clusters (sampling sites) as
10 to focus the study on sampling ability. A total of 10 sites
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Figure 4. Workflow of the optimal sample locating model. The
model relies on the GMM to find the most physiographic represen-
tative points in a domain while considering avalanche-prone terrain.

allow field measurement collectors enough time to travel to
all locations within a single day of sampling. To ensure that
the limited number of sites does not adversely impact model
performance, we test the sensitivity of the model to the num-
ber of training sites by executing multiple instances. For each
of the Franklin Basin, Boss Canyon, and Peterson Hollow
areas, we run the model initially with five clusters and in-
crease the number of clusters with each iteration to 100. For
each cluster center defined by the GMM, a ball-tree nearest-
neighbor search method is applied to locate the cell loca-
tion most closely represented by the features within the fea-
ture space. The output of the 10 GMM-identified optimal lo-
cations within the topographic feature domains of Franklin
Basin, Boss Canyon, and Peterson Hollow is shown in Fig. 5.
Within the Hell’s Kitchen Canyon subbasin, we performed a
single model execution of 10 clusters to locate 10 optimal
sampling sites for field measurement.

We run the GMM twice for each feature space: once in-
cluding cells defined as avalanche-prone and once exclud-
ing them. In each scenario, we use the same GMM with
the nearest-neighbor search method with an identical num-
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Figure 5. A three-dimensional representation of the GMM output of
the 10 most representative physiographic feature domain locations
for Franklin Basin, Boss Canyon, and Peterson Hollow.

ber of training sites. When avalanche terrain is excluded,
the next most similar neighbor is selected instead if an
avalanche-prone location is identified during the nearest-
neighbor search.

2.4 Snow survey protocol

The 10 sampling locations identified by the GMM were the
focus of a snow depth survey to retrieve in situ depth mea-
surements. Simultaneously with the snow-on lidar flight on
28 March 2021, two researchers conducted a snow survey of
the Hell’s Kitchen Canyon study subbasin. The researchers
reached the 10 locations at coordinates retrieved via a hand-
held Garmin inReach GPS device. The field team measured
depth at each site throughout the subbasin via graduated
snow depth probes. Each researcher took four measurements
spaced evenly at the prescribed locations and recorded the
average of the eight measurements. The first measurement
was taken at approximately 09:40 am with an air temper-
ature of 5.8 °C. Temperatures warmed throughout the day
to 10.6°C at the time and location of the final measure-
ment. The weather was clear during sampling, and the nearby
Dream Lift - KUTGARDE14 weather station (elev: 2220 m,
41.97° N, 111.54° W) measured the latest precipitation event,
5 days prior, with 0.46 cm of rain and 0.15 cm of snow. The
most recent significant precipitation event measured at the
station occurred 12 days prior, accumulating 2.59 cm of rain
and 0.69 cm of snow. Temperatures over the past month at the
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station were consistently above 4.4 °C during the day while
remaining below freezing at night, indicating melt periods in
the snowpack with few accumulation periods.

2.5 Snow depth regression model

We model basin snow depth distribution throughout the study
domain by applying a Gaussian process regression (GPR)
model (Fig. 6). Gaussian processes are a method of super-
vised machine learning that resolves a probability distribu-
tion (Gaussian) of multiple multivariate functions with joint
Gaussian distributions to fit a dataset (Williams and Ras-
mussen, 2006). The probabilistic and nonparametric nature
of a GPR allows it to effectively capture underlying patterns
even with minimal training data. A GPR model may be ex-
pressed as

f(x) ~GP(m(x),k(x,x)), )

where x represents a set of observations, m represents the
mean function, defined as E[ f (x)], and K (x,x’) is a covari-
ance function for all possible pairs of data points for a given
set of hyperparameters.

The GPR predicts the dependent (target) variable snow
depth for each point in the domain, given the independent
variables (i.e., topographic parameters) and a prior covari-
ance specified by a covariance function (kernel). GPR is cat-
egorized as a supervised machine learning regression tech-
nique, denoting that known values of the dependent variable
are used during training to define a covariance-based rela-
tionship with the independent variables and to predict at lo-
cations where the target variable is unknown. The applied
kernel determines the shape of the posterior distribution of
the GPR. We use a radial basis function (RBF) (also referred
to as a Gaussian or squared exponential covariance function),
k, defined by Eq. (6), where x;, x; are two data points, d
is the Euclidean distance between the two points, and [ is a
length-scale parameter.

2
k(xi,xj) = exp <M> (6)

2l

The parameter / controls the rate at which the correlation be-
tween two points decreases concerning distance and influ-
ences the “smoothness” of the prediction function. To deter-
mine a value for [, we perform a grid search across a range
of [0.01, 1] for every point, with the selected value being that
which maximizes the log-marginal likelihood.

Within Hell’s Kitchen Canyon, field-measured snow
depths from 10 locations are used as training data to esti-
mate basin-wide snow depth based on sites outside of the es-
timation domain. For the other model scenarios, which lack
snow survey data, lidar-derived snow depths at the GMM-
identified locations are used to train the GPR model. In this
approach, individual lidar point measurements serve as syn-
thetic snow probe samples. To prevent information leakage
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Figure 6. Workflow of the snow estimation model. The model relies on the GPR, which collates static lidar features and point snow depth
measurements to produce gridded snow depth estimates. In Hell’s Kitchen Canyon, in situ-measured snow depths were used for the training
data, while point observations of lidar-measured snow depth were used in the other domains.

between the training data and model validation, these point
measurements are excluded from the validation dataset.

2.6 Model evaluation

We measure the performance of the model as the differ-
ence in the predicted snow depth from the lidar-derived snow
depth throughout the basin. The standard mean bias error
(MBE) (Eq. 7) and root mean squared error (RMSE) (Eq. 8)
metrics are used to track and compare performance across the
various model scenarios. MBE and RMSE are defined here

as

@)

®)

where, for both formulas, 7 is the total number of points in
the domain, y; is the estimated snow depth, and y; is the mea-
sured snow depth. Additionally, we report the Kling—Gupta
efficiency (KGE) score of estimates (Eq. 9). KGE represents
the goodness of fit between simulations to observations and
incorporates the Pearson correlation coefficient (r), a term
representing the variability of prediction error («), and a bias
term (B). KGE ranges from —inf to 1.0, with larger values
indicating greater simulation efficiency and a KGE of 1.0 in-
dicating perfect reproduction of observations (Gupta et al.,
2009; Knoben et al., 2019).

KGE=1-/lr —1P+[a— 1P +[B—1P

Rk LU AR L R O
o(yi)-o (i) o (i) n(yi)

For further analysis of the results, we define distribution sim-

ilarity using the Kolmogorov—Smirnov (KS) test to define the
KS statistic (D), defined by the equation

Dy, = sup|F,(x) — F(x)l, (10)

] a (i) w(¥i)
where: r = =

where F),(x) is the empirical distribution function of the es-
timates, F(x) is the cumulative distribution function of the
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reference distribution, and sup, denotes the supremum or the
maximum value of the absolute difference across all values
of x. The KS statistic measures the largest absolute differ-
ence between two distributions on a scale of 0 to 1, with a
value of 0 indicating identical distributions (Conover, 1999).

To address the study objectives outlined in Sect. 1, we as-
sess the model’s performance across two distinct scenarios.
First, we validate the model by estimating snow depth within
a subbasin, utilizing only sampling sites from that basin. We
compare the accuracy of snow depth estimates obtained from
optimally located sites versus those from randomly selected
sites. We also investigate how the number of sampling loca-
tions affects model accuracy by testing sparse measurements
(e.g., 10 sites) against a more extensive dataset (e.g., 100
sites).

In the second scenario, we apply the validated model to
estimate snow depth across the larger Franklin Basin, us-
ing sampling sites from selected subbasins (Objective ii).
For this, we use either field-measured sample sites from
Hell’s Kitchen Canyon or point observations derived from
lidar snow depth values as the training data for the GPR
model. In both scenarios, we explore the impact of excluding
avalanche-prone terrain from the sampling locations (Objec-
tive iii). Avalanche-prone cells are excluded during the GMM
process and then reinstated for GPR snow depth estimation.
The resulting snow depth estimates are then compared with
those derived from the full-cell domain.

3 Results
3.1 Algorithm validation

We validate the estimation capability of the GMM-GPR
model within the study domain by processing snow depth
estimates for the Boss Canyon and Peterson Hollow sub-
basins with lidar point observations sites in each catchment
and comparing the scoring metrics (Table 3). In each tested
scenario, optimally located sampling sites by the GMM re-
sulted in reduced RMSE and improved MBE and KGE scores
over randomly located sites. With 10 training sites optimally
located by the GMM, the snow depth estimate results in RM-
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SEs of 0.37 and 0.19 m for Boss Canyon and Peterson Hol-
low, compared to 0.43 and 0.33 m for random sites, respec-
tively (Fig. 7). The resulting estimate is only slightly im-
proved when increased to 100 optimally located sites. Com-
paring sampling sites at random locations throughout the
watershed rather than algorithm-identified sites, the model
RMSE for the 10 sites increases by 16 % and 74 %, with
a greatly reduced bias for Boss Canyon and Peterson Hol-
low, respectively. Increasing the sampling to 100 randomly
located sites slightly reduced the RMSE for Peterson Hol-
low compared to 10 random sites, with an improvement in
MBE, while the error was exacerbated for Boss Canyon. The
increased random sampling rate still results in greater error
than just using the 10 optimized locations. For each scenario,
modeled snow depth was slightly underestimated. The full
sensitivity analysis may be found in Fig. S1 of the Supple-
ment.

3.2 TImpact of avalanche terrain removal

The exclusion of avalanche-prone terrain had minimal influ-
ence on the resulting model estimation. When the high-risk
cells are excluded from the potential sampling domain for
Boss Canyon, the RMSE of the subbasin snow depth estimate
for the 10 training locations increases by 2.7 %. The MBE re-
mains unaffected, and the KGE is slightly reduced from 0.54
to 0.47. For the 10 sites within Peterson Hollow, when ac-
counting for avalanche terrain, the subbasin estimate RMSE
expresses an increase of 11 % and a slight increase in MBE
and reduction of KGE. The potential for optimal sampling
sites being identified in avalanche-prone terrain increases as
the number of sites increases, though the model remains ro-
bust when increasing the sampling site total and excluding
the terrain. We find no significant change in the model score
when the training set is increased to 100 sites outside of high-
risk terrain. The Boss Canyon watershed estimate RMSE im-
proves by 3.2 %, and KGE decreases by 1.3 %. In Peterson
Hollow, the accuracy metrics do not change with the increase
in the number of sites considered.

3.3 Estimation beyond the sampling region

Expanding the estimation domain beyond the smaller sub-
basin sampling spatial bounds results in effective snow depth
modeling at the greater basin scale. We compare the re-
sults of the basin estimate for the various scenarios of 10
sites in a subbasin excluding avalanche terrain (Fig. 8). For
the Franklin Basin sampling instance, the RMSE of the
basin estimate exhibits an RMSE of 0.34m, an MBE of
—0.06m, and a KGE of 0.72. All subbasin sampling do-
main estimations result in RMSESs similar to that of the basin
sampled estimate (within 28 %), with Boss Canyon provid-
ing the lowest RMSE (0.37 m) of the three subbasins and
Hell’s Kitchen Canyon providing the largest (0.45 m). Hell’s
Kitchen Canyon also provides the lowest KGE (0.39), while
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Peterson Hollow maintains the highest (0.59). The absolute
value of MBE is within 0.22 m for each estimate, with Boss
Canyon and Hell’s Kitchen Canyon slightly overestimating
the basin’s snow depth, while Peterson Hollow underesti-
mates on average.

While the Hell’s Kitchen Canyon derived estimate exhibits
slightly greater RMSE than the Boss Canyon and Peterson
Hollow estimates, the overall snow depth distribution is more
similar to the true distribution (Fig. 9). The Hell’s Kitchen
Canyon estimated snow depth exhibits a Dyk of 0.13, and
only the Franklin Basin derived estimate is more similar to
the true distribution, with Dgg = 0.10. The overestimation of
the Boss Canyon estimate can be observed in the distribution
plot and with the greatest KS statistic of Dgc = 0.28. For all
subbasin estimates, errors increase with elevation (Fig. 10).

When comparing the results of the estimates with
avalanche-prone terrain excluded to estimates that included
the terrain, we observe minimal performance loss in basin-
scale estimation. The result of excluding avalanche terrain in
the Franklin Basin sampling domain does not affect the esti-
mation error, as the 10 most characteristic sites are located
outside of avalanche terrain. Excluding the terrain within
Boss Canyon results in a 2.5 % increase in RMSE and an
improvement of MBE from 0.17 to 0.15 m relative to basin
estimates. Meanwhile, Peterson Hollow estimates exhibit an
increase of 7.5 % in RMSE and a 12 % drop in MBE. No
instance of included avalanche terrain was executed in the
Hell’s Kitchen Canyon analysis due to the constraint of hav-
ing only one snow survey, which did not allow for sampling
avalanche-prone areas.

4 Discussion
4.1 Performance across subbasins

For each modeled scenario, the model consistently produced
accurate snow depth estimates based on a small number of
training locations and with better accuracy than random sam-
pling (Table 3). Both the Boss Canyon and Peterson Hollow
scenarios showed small decreases in accuracy when the es-
timation was expanded to the full basin, though they main-
tained similar MBEs and distributions. Peterson Hollow ex-
hibited a greater drop in accuracy than Boss Canyon when
estimating beyond its border due to its more homogenous
feature distribution. Despite the decreased performance, the
larger region-scale estimate from the GMM-identified Pe-
terson Hollow sites exceeded the accuracy of random sites
throughout the basin. In Hell’s Kitchen Canyon, a subbasin
outside of the Franklin Basin domain, the similarity of the
basin-scale estimate distribution exemplifies how it can ade-
quately estimate snowpack in the basin, though with slightly
worse scoring metrics than the other subbasins. This indi-
cates that a smaller sampling catchment with optimized sam-
pling sites can be accurately applied to model a larger or sim-
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Table 3. Model scenario and accuracy metrics for snow depth estimates of the Boss Canyon and Peterson Hollow subbasins and the full
Franklin Basin region. Each scenario was executed for randomly selected and optimal locations (GMM) within the respective sampling
subbasin, with 10 or 100 locations, and with and without avalanche-prone (Avy.) terrain. Model-identified training locations show improved
estimation performance over randomly selected sites. Increasing the number of optimized sites provides a slight improvement in accuracy in

most scenarios.

. . Number of locations ‘
Sampling region

Including Avy. terrain ‘

Excluding Avy. terrain

(Methodology) | RMSE (m) MBE (m) KGE | RMSE (m) MBE(m) KGE
Boss Canyon 10  (Random) 0.43 —0.13  0.36 0.43 —0.13 0.36
Boss Canyon 100  (Random) 0.66 -026 0.19 0.66 -026 0.19
Boss Canyon 10 (GMM) 0.37 —0.05 0.54 0.38 —0.05 0.47
Boss Canyon 100  (GMM) 0.31 —-0.06 0.75 0.32 —-0.06 0.74
Peterson Hollow 10  (Random) 0.33 —-0.16  0.49 0.33 —-0.16  0.49
Peterson Hollow 100  (Random) 0.28 —-0.06 0.59 0.28 —-0.06 0.59
Peterson Hollow 10 (GMM) 0.19 00 0.77 0.21 —-0.03 0.71
Peterson Hollow 100 (GMM) 0.18 —0.01 0.8 0.18 —0.01 0.8
Franklin Basin 10  (Random) 0.43 —0.08 0.53 0.43 —0.08 0.53
Franklin Basin 100  (Random) 0.51 —-0.16 0.42 0.51 —-0.16 0.42
Franklin Basin 10 (GMM) 0.34 —-0.06 0.72 0.43 —0.08 0.53
Franklin Basin 100  (GMM) 0.37 —-0.07 0.63 0.51 —-0.16 042

Density (m) 2 Density (m)

Boss Canyon

Density (m)

4]

fn’or Density (m)

1 RMSE: 0.37
MBE: -0.05
KGE: 0.54

0
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Figure 7. Subbasin lidar snow depth, estimated snow depth, and estimation error for Boss Canyon and Peterson Hollow for 10 model-
identified optimal sampling locations (x) and associated accuracy metrics.

ilar basin without sacrificing performance, though perhaps
up to a limit.

4.2 Sampling constraints and practical considerations

Small improvements in model performance were observed
as we increased the number of sampling locations beyond
10 sites and when considering a larger spatial sampling do-
main. However, increasing the number or spatial range of
sites makes it infeasible for a group of samplers to collect
snow depth samples in a single day. The ability to collect data
quickly is critical to accurately representing the snowpack
before changes occur, such as melting or new accumulation.
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Additionally, access to sampling locations and the availabil-
ity of citizen-scientist-collected data may be limited to cer-
tain areas. For example, Hell’s Kitchen Canyon is a popular
outdoor recreation area with nearby parking and trail access.
It is more likely to see traffic, which may result in more data
collection than in a more remote area. Under different condi-
tions, a sampling team may reach more than 10 sites in a day,
such as with multiple teams taking samples simultaneously,
or there may be many snow probe data points at a higher den-
sity in a larger region. Conversely, sampling may be more
challenging in a more remote or complex environment, and
the quality of sampling may be worse.
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distribution similarity between the estimate and true snow depth.

While 10 sites were selected as the focus of this study, we
did not aim to determine an optimal number of locations for a
snow survey. During model validation, we observed variation
in performance from incremental increases in the number of
training sites (e.g., increasing from 10 to 11 sites). However,
the overall trend across all basins was consistent: increas-
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ing the number of points did not significantly improve model
performance over a smaller sample, such as 10 (Fig. S1). We
hypothesize that an optimal sample number is dependent on
factors such as basin size, regional characteristics, and terrain
complexity. Therefore, determining the optimal or projected
number of physically collected sampling points becomes a
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Figure 10. Distribution of basin-scale snow depth estimate errors for the individual physiographic features. Estimate variance is greater,
particularly at higher elevations and at the extremes of the wind shelter spectrum. The Hell’s Kitchen Canyon estimate exhibits the largest

variance across all variables.

complex calculation of sampling area, group size, region traf-
fic, and community engagement with data collection. Future
work shall identify the lower bounds of sampling sites and
region size that may still produce representative results. For
the subbasins in our study and a group of two samplers, ap-
proximately 10 sites were the most they could safely mea-
sure in 1 day without mechanized travel, and we consider the
10-site simulations relevant and realistic for similar environ-
ments and scales. Additionally, future work could explore a
single-site (e.g., SNOTEL-based) framework to assess tem-
porally continuous model performance. However, due to a
lack of validation data, this was beyond the scope of our
study. We anticipate that using only one or very few sampling
sites would lead to a highly biased and overfitted model, as
the GPR would struggle to capture the underlying spatial re-
lationships.

It should be noted that the specified accuracy range of the
lidar sensor (< 0.03—0.25 m) may be significant, considering
the depth of snowpack in the region, and warrants further ex-
amination. For the Hell’s Kitchen Canyon simulation, which
relies on field measurements, errors in lidar data or in the
depth probe measurements may lead to biases in the overall
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snow depth estimate. Although the impact of uncertainty on
the study’s results is unclear, the synthetic sampling method
in the other domains mitigates additional error by directly
comparing lidar measurements to lidar measurements. Fur-
ther research should involve validating the model with di-
verse lidar sources and additional ground-truth datasets to
quantify and characterize the error.

4.3 Influence of avalanche-prone terrain

The model showed low sensitivity to the consideration of
avalanche-prone terrain. In all scenarios, excluding high-risk
terrain led to minimal or negligible increases in estimation
RMSE for the tested regions. Thus, snow samplers’ safety is
protected without sacrificing significant estimate accuracy, as
they do not need to physically sample in higher-risk terrain.
While the absence of terrain does not greatly impact the aver-
age basin estimate, it does have a larger effect on the estima-
tion bias observed. The Boss Canyon estimate suffers from
more underestimation of snow depth, likely due to the under-
representation of higher elevations, which are largely asso-
ciated with avalanche-prone slopes within the canyon. Addi-
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tionally, only 5 % of the cells within Franklin Basin and 10 %
within Hell’s Kitchen Canyon consist of terrain defined as
avalanche-prone. This allows for an adequate sampling do-
main outside of avalanche risk, with a broad enough range of
features to represent the region in safe-to-sample locations.
While a slope angle of 30° is a commonly referenced
threshold for avalanches, accurately determining avalanche
terrain is often more complex. Avalanches may run out to
flatter areas beyond the risk terrain analyzed in this study or
may propagate horizontally to areas of slope angles below
the threshold. In steeper, more complex terrain, the area un-
available for safe sampling may be much larger, and the esti-
mation performance observed in Franklin Basin may not be
exhibited in other regions. Future work will aim to apply the
model to additional regions of steep terrain to determine the
potential limits of domain exclusion from avalanche terrain.

4.4 Sampling domain similarity and model
performance

A key assumption of the methodology is that there is enough
characteristic variety in the sampling domain to represent
the variability in the feature space of the estimation region.
We can observe this dependency on sampling and estimation
domain similarity by comparing the physiographic features
of the various domains (Fig. 2). Hell’s Kitchen Canyon’s
canopy height distribution appears very dissimilar to the
other canopy distributions. This is due to the spatial res-
olution difference between Hell’s Kitchen Canyon and the
other domains. Hell’s Kitchen Canyon maintains a higher
resolution that is capable of capturing the smaller varia-
tions in canopy height, whereas this detail is averaged out
during the upscaling process of the other regions. The in-
creased variance of values likely contributes to the Hell’s
Kitchen Canyon model resulting in poorer performance than
the other models. However, we posit that with uniform res-
olution, the feature space would present more analogous to
Franklin Basin’s and thus improve results.

By comparing the individual topographic features to esti-
mate error, we observe the largest variance of error correlated
with higher elevations and at the extremes of the wind shel-
ter metric (i.e., fully exposed or sheltered terrain) (Fig. 10).
In a small, snow-fed catchment (< 1km2), wind redistribu-
tion of snow may be the most important factor for snow-
pack accumulation and persistence, with the best predictor
of single-point snow depth being its elevation relative to the
neighboring terrain at a 40 m radius (Anderton et al., 2004).
In practice, however, obtaining or generating accurate wind
scales for snow depth estimation at the basin scale is chal-
lenging and requires the downscaling of computational fluid
dynamic models or high-resolution numerical weather pre-
diction models (Reynolds et al., 2021). Another approach is
to classify persistent locations of wind-drifted snow from re-
mote sensing imagery for feature development, though this
requires historical analysis and the addition of multiple data
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sources. Overall, a more detailed investigation of the local
wind dynamics in a sampling region beyond the simplified
wind shelter metric applied in this study may be considered
to improve model performance.

While redistribution factors such as wind play a major role
in snow depth distribution, the elevation relationship is also
central. In alpine environments, snow depth tends to increase
with elevation up to a point correlating with prominent rock
coverage and then decreases beyond. The decrease in depth
at high elevation is likely due to redistribution and preferen-
tial deposition factors, such as wind transport, avalanching,
and sloughing from steeper to shallower slopes (Griinewald
etal., 2014). Additionally, orographic precipitation dynamics
can result in varying elevation precipitation patterns (Roe and
Baker, 2006). We can observe the model elevation depen-
dence, particularly in the Boss Canyon results, which con-
tain the highest percentage of high-elevation cells among all
subbasins. This leads to the most accurate depth estimates
at higher elevations and ridgelines in the large-scale analy-
sis. In contrast, the lower subbasins of Peterson Hollow and
Hell’s Kitchen Canyon show weaker performance in estimat-
ing these areas.

More normally distributed in feature space than the other
regions, Peterson Hollow lacks the topographic diversity to
accurately estimate snow depth at the highest elevations and
particularly on northerly aspects. The lack of high eleva-
tions in Peterson Hollow likely causes it to fail relative to
the other subbasins in representing the high-elevation trans-
port dynamics of the larger Franklin Basin, resulting in
high-elevation underestimation. Alternatively, Boss Canyon
encompasses a broader feature range, more similar to the
greater basin, and results in a more accurate estimate. Thus,
selecting a diverse and representative sampling area is ad-
vantageous when modeling beyond the spatial bounds of the
sampling area.

The distinction in basin elevation distribution between the
regions is identifiable. Hell’s Kitchen Canyon, which sits at
a lower elevation than the overall Franklin Basin, exhibited
greater error at high elevations and along mountain ridgelines
(Fig. 8). In contrast, Boss Canyon, with a higher average ele-
vation, showed greater snow depth estimation errors at lower
elevations. These results suggest that elevation plays a cru-
cial role in model accuracy, and selecting a representative
sampling domain is key to minimizing estimation bias.

4.5 Implications for model transferability and future
work

To improve model transferability, incorporating additional
features such as radiative forcing, land cover, and atmo-
spheric properties may help compensate for the limitations of
the physiographic feature space. In this study, we constrained
the feature space to maintain efficient domain preprocessing
and execution using a single lidar dataset. However, expand-
ing the feature space could enhance model performance, par-
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ticularly in regions with more complex snowpack dynamics.
Future studies should explore the benefits of integrating mul-
tisource datasets to refine snow depth estimations across di-
verse topographic environments.

While this methodology was shown to be effective in the
study region of northern Utah and southern Idaho, applica-
tion in other regions is necessary to evaluate performance
across various topographic environments and snow climates.
The snow distribution of Franklin Basin at the time of sam-
pling presented as near-Gaussian (Fig. 3). The expectation
of a Gaussian distributed target variable is a key assumption
of a GPR model. While snow depth often appears as Gaus-
sian in subalpine and non-ephemeral regions, non-Gaussian
distributions are observed in more complex or ephemeral en-
vironments (He et al., 2019; Ohara et al., 2024). Applica-
tion of the model in more diverse snow environments, in-
cluding basins with greater exposure to wind-swept terrain
above the treeline, and basins with snow-free areas is needed
to understand transferability to regions less likely to meet the
Gaussian assumption. Additionally, this study is performed
for a single date towards the end of the snow season. More
sampling dates and periods throughout the snow season, es-
pecially after snow accumulation events, should be investi-
gated to determine the temporal strength and sensitivity of
the model.

5 Conclusions

The development of low-cost, near-real-time snow estima-
tion is critical for water resource monitoring, particularly in
remote, unmonitored regions. With this study, we introduce a
methodology leveraging physiographic features derived from
one-time-captured snow-off lidar and a small number of in
situ sampling points to generate region-scale snow depth es-
timates with low cost and high temporal efficiency. A two-
step machine learning workflow is applied. First, a Gaus-
sian mixture model is used to locate optimal sampling lo-
cations based on feature representation. These locations are
then sampled for point snow depth values and used to train
a Gaussian process regression algorithm to estimate broad-
scale snow depths. We find that with few (i.e., 10) optimized
sampling points, the model is effective at estimation both at
the subbasin and greater basin scales. The solution proves
robust for model scenarios encompassing both the sampling
subbasin (Boss Canyon and Peterson Hollow) and for a sam-
pling subbasin (Hell’s Kitchen Canyon) outside of the esti-
mate bounds. With the goal of lowering the avalanche risk
of individuals sampling snow depths in the field, we test the
sensitivity of the model to the exclusion of avalanche-prone
terrain from the sampling domain. When high-risk terrain is
removed, we observe that the model produces snow depth es-
timates with minimal performance loss. Results demonstrate
that a relatively small number of optimal sampling locations
can effectively model snow depth across a broader region,
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reducing the need for extensive sampling campaigns. This
approach provides a use case for accurate snow modeling via
application of a low-cost snow probe measurement while pri-
oritizing safety and systematically reducing personnel dan-
ger in the field.
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