Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2769-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-2769-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Stream microbes preferentially respire young carbon within the ancient glacier dissolved organic carbon pool
Amy D. Holt
CORRESPONDING AUTHOR
National High Magnetic Field Laboratory Geochemistry Group, Florida State University, Tallahassee, FL 32306, USA.
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Program on the Environment, University of Alaska Southeast, Juneau, AK 99801, USA
Alaska Coastal Rainforest Center, University of Alaska Southeast, Juneau, AK 99801, USA
Jason B. Fellman
Program on the Environment, University of Alaska Southeast, Juneau, AK 99801, USA
Alaska Coastal Rainforest Center, University of Alaska Southeast, Juneau, AK 99801, USA
Anne M. Kellerman
National High Magnetic Field Laboratory Geochemistry Group, Florida State University, Tallahassee, FL 32306, USA.
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Eran Hood
Program on the Environment, University of Alaska Southeast, Juneau, AK 99801, USA
Alaska Coastal Rainforest Center, University of Alaska Southeast, Juneau, AK 99801, USA
Samantha H. Bosman
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Amy M. McKenna
National High Magnetic Field Laboratory Geochemistry Group, Florida State University, Tallahassee, FL 32306, USA.
Department of Soil Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, United States
Jeffery P. Chanton
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Robert G. M. Spencer
National High Magnetic Field Laboratory Geochemistry Group, Florida State University, Tallahassee, FL 32306, USA.
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Related authors
No articles found.
Tiia Määttä, Samantha Bosman, Jeffrey Chanton, Patrick Crill, Suzanne Hodgkins, Jalisha Theanutti Kallingal, Rachel Wilson, Ruth Varner, and Avni Malhotra
EGUsphere, https://doi.org/10.5194/egusphere-2026-467, https://doi.org/10.5194/egusphere-2026-467, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Permafrost thaw can lead to vegetation shifts and higher methane (CH4) emissions in peatlands. However, plant belowground controls of these emissions are uncertain. We investigated how plant roots and rhizomes contribute to CH4 emissions along a peatland permafrost thaw gradient. We found that low herbaceous plant root tissue density and high rhizome surface area were associated with higher CH4 emissions. This indicated increased plant-mediated CH4 transport with thaw.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025, https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Short summary
This study provides the first evidence for biogeochemical cycling of supraglacial dissolved organic matter (DOM) in meltwater flowing through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microbes and solar radiation to alter the DOM in glacial meltwaters. This is important as supraglacial meltwaters deliver DOM to downstream aquatic environments.
Amy Jenson, Jason M. Amundson, Jonathan Kingslake, and Eran Hood
The Cryosphere, 16, 333–347, https://doi.org/10.5194/tc-16-333-2022, https://doi.org/10.5194/tc-16-333-2022, 2022
Short summary
Short summary
Outburst floods are sudden releases of water from glacial environments. As glaciers retreat, changes in glacier and basin geometry impact outburst flood characteristics. We combine a glacier flow model describing glacier retreat with an outburst flood model to explore how ice dam height, glacier length, and remnant ice in a basin influence outburst floods. We find storage capacity is the greatest indicator of flood magnitude, and the flood onset mechanism is a significant indicator of duration.
Cited articles
Behnke, M. I., Stubbins, A., Fellman, J. B., Hood, E., Dittmar, T., and Spencer, R. G.: Dissolved organic matter sources in glacierized watersheds delineated through compositional and carbon isotopic modeling, Limnol. Oceanogr., 66, 438–451, 2020.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153–158, 1997.
Fellman, J. B., Nagorski, S., Pyare, S., Vermilyea, A. W., Scott, D., and Hood, E.: Stream temperature response to variable glacier coverage in coastal watersheds of Southeast Alaska, Hydrol. Process., 28, 2062–2073, 2014.
Fellman, J. B., Hood, E., Raymond, P. A., Hudson, J., Bozeman, M., and Arimitsu, M.: Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web, Limnol. Oceanogr., 60, 1118–1128, 2015.
Hågvar, S. and Ohlson, M.: Ancient carbon from a melting glacier gives high 14 C age in living pioneer invertebrates, Sci. Rep., 3, 1–4, 2013.
Hobson, K. A. and Welch, H. E.: Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis, Mar. Ecol. Prog. Ser., 84, 9–18, 1992.
Holt, A. D. and Spencer, R.: P19289_Stream Microbes Preferentially Utilize Young Carbon within the Ancient Glacier Dissolved Organic Carbon Pool, OSF [data set], https://doi.org/10.17605/OSF.IO/4M2KX, 2024.
Holt, A. D., Kellerman, A. M., Li, W., Stubbins, A., Wagner, S., McKenna, A., Fellman, J., Hood, E., and Spencer, R. G.: Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff, J. Geophys. Res.-Biogeo., 126, e2021JG006516, https://doi.org/10.1029/2021JG006516, 2021.
Holt, A. D., Kellerman, A. M., Battin, T. I., McKenna, A. M., Hood, E., Andino, P., Crespo-Pérez, V., Peter, H., Schön, M., and De Staercke, V.: A tropical cocktail of organic matter sources: Variability in supraglacial and glacier outflow dissolved organic matter composition and age across the Ecuadorian Andes, J. Geophys. Res.-Biogeo., 128, e2022JG007188, https://doi.org/10.1029/2022JG007188, 2023.
Holt, A. D., McKenna, A. M., Kellerman, A. M., Battin, T. I., Fellman, J. B., Hood, E., Peter, H., Schön, M., De Staercke, V., and Styllas, M.: Gradients of deposition and in situ production drive global glacier organic matter composition, Global Biogeochem. Cy., 38, e2024GB008212, https://doi.org/10.1029/2024GB008212, 2024.
Hood, E. and Scott, D.: Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage, Nat. Geosci., 1, 583–587, 2008.
Hood, E., Fellman, J., Spencer, R., Hernes, P., Edwards, R., D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile organic matter to the marine environment, Letters to Nature, 462, 1044–1048, https://doi.org/10.1038/nature08580, 2009.
Hood, E., Battin, T., Fellman, J., O'Neel, S., and Spencer, R.: Storage and release of organic carbon from glaciers and ice sheets, Nat. Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Kohler, T. J., Bourquin, M., Peter, H., Yvon-Durocher, G., Sinsabaugh, R. L., Deluigi, N., Styllas, M., Vanishing Glaciers Field Team, Styllas, M., Schön, M., Tolosano, M., de Staercke, V., and Battin, T. J.: Global emergent responses of stream microbial metabolism to glacier shrinkage, Nat. Geosci., 17, 309–315, 2024.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate, P. Natl. Acad. Sci. USA, 107, 19691–19695, 2010.
McCallister, S. L., Guillemette, F., and Del Giorgio, P. A.: A system to quantitatively recover bacterioplankton respiratory CO2 for isotopic analysis to trace sources and ages of organic matter consumed in freshwaters, Limnol. Oceanogr.-Meth., 4, 406–415, 2006.
McCrimmon, D. O., Bizimis, M., Holland, A., and Ziolkowski, L. A.: Supraglacial microbes use young carbon and not aged cryoconite carbon, Org. Geochem., 118, 63–72, 2018.
McMahon, K. W., Ambrose Jr, W. G., Johnson, B. J., Sun, M.-Y., Lopez, G. R., Clough, L. M., and Carroll, M. L.: Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard, Mar. Ecol. Prog. Ser., 310, 1–14, 2006.
Musilova, M., Tranter, M., Wadham, J., Telling, J., Tedstone, A., and Anesio, A. M.: Microbially driven export of labile organic carbon from the Greenland ice sheet, Nat. Geosci., 10, 360–360, 2017.
Schmidt, S. K., Johnson, B. W., Solon, A. J., Sommers, P., Darcy, J. L., Vincent, K., Vimercati, L., Fountain, A. G., and Porazinska, D. L.: Microbial biogeochemistry and phosphorus limitation in cryoconite holes on glaciers across the Taylor Valley, McMurdo Dry Valleys, Antarctica, Biogeochemistry, 158, 313–326, 2022.
Smith, H. J., Foster, R. A., McKnight, D. M., Lisle, J. T., Littmann, S., Kuypers, M. M., and Foreman, C. M.: Microbial formation of labile organic carbon in Antarctic glacial environments, Nat. Geosci., 10, 356–359, 2017.
Spencer, R. G., Vermilyea, A., Fellman, J., Raymond, P., Stubbins, A., Scott, D., and Hood, E.: Seasonal variability of organic matter composition in an Alaskan glacier outflow: Insights into glacier carbon sources, Environ. Res. Lett., 9, 055005, https://doi.org/10.1088/1748-9326/9/5/055005, 2014.
Spencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K., Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M., and Wabakanghanzi, J. N.: Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River, J. Geophys. Res.-Biogeo., 114, G03010, https://doi.org/10.1029/2009JG000968, 2009.
Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L., Hernes, P. J., Butman, D., Hatcher, P. G., Striegl, R. G., and Schuster, P.: Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat. Geosci., 5, 198–201, https://doi.org/10.1038/ngeo1403, 2012.
Wang, P., Zhou, W., Xiong, X., Wu, S., Niu, Z., Cheng, P., Du, H., and Hou, Y.: Stable carbon isotopic characteristics of fossil fuels in China, Sci. Total Environ., 805, 150240, https://doi.org/10.1016/j.scitotenv.2021.150240, 2022.
Wilson, F. H., Hults, C. P., Mull, C. G., and Karl, S. M.: Geologic map of Alaska, Scientific Investigations Map 3340, https://doi.org/10.3133/sim3340, 2015.
Xu, L., Roberts, M. L., Elder, K. L., Kurz, M. D., McNichol, A. P., Reddy, C. M., Ward, C. P., and Hanke, U. M.: Radiocarbon in Dissolved Organic Carbon by UV Oxidation: Procedures and Blank Characterization at NOSAMS, Radiocarbon, 63, 357–374, 2021.
Short summary
Glacier runoff is a source of old bioavailable dissolved organic carbon (DOC) to downstream ecosystems. The DOC pool is composed of material of various origins, chemical compositions, ages, and levels of bioavailability. Using bioincubation experiments, we show that glacier DOC respiration is driven by a young source, rather than by ancient material which comprises the majority of the glacier carbon pool. This young bioavailable fraction could currently be a critical carbon subsidy for recipient food webs.
Glacier runoff is a source of old bioavailable dissolved organic carbon (DOC) to downstream...