

Supplement of

Brief communication: Stream microbes preferentially respire young carbon within the ancient glacier dissolved organic carbon pool

Amy D. Holt et al.

Correspondence to: Amy D. Holt (adh19d@fsu.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Sect. S1 Description of C3 and C4 Vegetation

Plants can be divided into two main groups based on photosynthetic pathway (e.g., Hobbie and Werner, 2003; Langdale., 2011 and references there in). The C_3 photosynthetic pathway produces a 3-carbon acid as a result of carbon fixation using the Calvin cycle, whereas C_4 plants produce a 4-carbon containing compound following the Hatch-Slack pathway (Hobbie and Werner., 2003). C_3 plants make up the majority (~95% of biomass) of the world's plants and comprise trees, shrubs, and flowering plants. C_3 plants are typically found in moist, temperate to cold climates (Still et al., 2003). C_4 plants (~5% of biomass) are typically found in hot, dry regions and include most tropical species of grass and agricultural crops like maize and sugar cane (Still et al., 2003). The C_4 photosynthetic pathway is a more recent (~30 Mya) adaptation to conserving water and reducing photorespiration in hot, arid climes (Langdale., 2011). Differences in photorespiration pathways between C_3 and C_4 plants result in variances in isotopic fractionation (i.e., differences in $^{13}C^{12}C$ ratios), meaning that the contribution of carbon from the two plant groups can be distinguished in environmental samples, including of dissolved organic carbon (e.g., Khon., 2010; Drake et al., 2020). C_4 plants ($\delta^{13}C$ -14 to -10 ‰; Cerling et al., 1993, 1997) are enriched in ^{13}C in comparison to C_3 plants ($\delta^{13}C$ -37 to -20 ‰; Khon., 2010).

Table S1. Number of formulae and relative abundance (RA) weighted mass, H/C and O/C ratio, nominal oxidation state of carbon (NOSC; Riedel et al., 2012), and modified aromaticity index (AI $_{mod}$; Koch and Dittmar 2016), together with the percent RA of each compound and heteroatom class

	Eagle	Herbert	Mendenhall	Mendenhall
	Glacier	Glacier	Glacier	Supraglacial
Formulae (#)	15,537	18,793	17,709	16,077
Mass (Da)	495.1	544.4	510.2	493.9
H/C	1.27	1.27	1.26	1.32
O/C	0.46	0.48	0.48	0.45
NOSC	-0.3	-0.27	-0.25	-0.37
$\mathrm{AI}_{\mathrm{mod}}$	0.24	0.22	0.23	0.21
Highly Unsaturated and				
Phenolic (% RA)	68.7	73.0	70.6	58.4
Aliphatics (% RA)	22.6	21.0	21.5	34.2
Polyphenolic (% RA)	7.0	5.3	6.6	5.9
Condensed Aromatic (%RA)	1.7	0.6	1.1	1.4
CHO (% RA)	79.5	75.5	75.9	74.6
CHON (% RA)	16.7	19.2	18.6	15.4
CHOS (% RA)	3.8	5.3	5.4	9
CHONS (% RA)	0	0	0.1	1

Table S2: Quantities of CO₂ produced during respiratory carbon recovery bioincubations

	Eagle Glacier	Herbert Glacier	Mendenhall Glacier	Mendenhall Supraglacial
	Outflow	Outflow	Outflow	Stream
CO ₂ (mg C)	0.3	0.3	0.3	0.2

References

Cerling, T. E., Wang, Y., and Quade, J.: Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene, Nature, 361, 344-345, 1993.

Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153-158, 1997.

Drake, T. W., Wagner, S., Stubbins, A., Wabakanghanzi, J. N., Dinga, J. B., Six, J., and Spencer, R. G.: Du Feu à l'Eau: Source and Flux of Dissolved Black Carbon From the Congo River, Global Biogeochemical Cycles, 34, e2020GB006560, 2020.

Hobbie, E. and Werner, R. A.: Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis, New Phytologist, 161, 371-385, 2004.

Koch, B. and Dittmar, T.: From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Rapid Commun. Mass Sp., 30, 250–250, 2016.

Langdale, J. A.: C4 cycles: past, present, and future research on C4 photosynthesis, The Plant Cell, 23, 3879-3892, 2011.

Riedel, T., Biester, H., and Dittmar, T.: Molecular fractionation of dissolved organic matter with metal salts, Environmental Science & Technology, 46, 4419-4426, 2012.

Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global distribution of C3 and C4 vegetation: carbon cycle implications, Global biogeochemical cycles, 17, 6-1-6-14, 2003