Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2583-2025
https://doi.org/10.5194/tc-19-2583-2025
Research article
 | 
18 Jul 2025
Research article |  | 18 Jul 2025

Calibrating calving parameterizations using graph neural network emulators: application to Helheim Glacier, East Greenland

Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar

Data sets

Graph neural network emulator for modeling of ice dynamics and calving in the Helheim Glacier, Greenland Y. Koo https://doi.org/10.5281/zenodo.11392220

Download
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Share