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Abstract. Calving is responsible for the retreat, acceleration,
and thinning of numerous tidewater glaciers in Greenland.
An accurate representation of this process in ice sheet numer-
ical models is critical to better predict the future response of
the ice sheet to climate change. While traditional numerical
models have been used to simulate ice dynamics and calv-
ing under specific parameterized conditions, the computa-
tional demand of these models makes it difficult to efficiently
fine-tune these parameterizations, adding to the overall un-
certainty in future sea level rise. In this study, we adopt three
standard graph neural network (GNN) architectures, includ-
ing graph convolutional network, graph attention network,
and equivariant graph convolutional network (EGCN), to de-
velop surrogate models for finite-element simulations from
the Ice-sheet and Sea-level System Model. GNNs are par-
ticularly well-suited for this problem as they naturally cap-
ture the representation of unstructured meshes used by finite-
element models. When these GNNs are trained with numeri-
cal simulations of Helheim Glacier, Greenland, for different
calving stress thresholds, they successfully reproduce the ob-
served evolution of ice velocity, ice thickness, and ice front
migration between 2007 and 2020. Moreover, these emula-
tors exhibit uncertainties of less than 10 %–20 % when ex-
trapolating to out-of-sample calving parameterization cases.
Among the three GNN architectures, EGCN outperforms the
others by preserving the equivariance of graph structures. By
leveraging the GPU-based GNN emulators, which are 30–34
times faster than traditional numerical simulations, we deter-
mine the temporal variations of the optimal calving thresh-

old that minimizes the misfit between modeled and observed
ice fronts. This fine-tuned calving parameterization, enabled
by GNN emulators, can enhance the reliability of numerical
models in capturing glacier mass loss driven by calving.

1 Introduction

Over the past three decades, the Greenland ice sheet has ex-
perienced an average annual loss of 170 Gt of ice, resulting
in a global mean sea level rise exceeding 15 mm (Otosaka
et al., 2023). This trend of mass loss has intensified in recent
years. Between 1990 and 2000, the annual mass loss hovered
around 40 Gta−1, but in the 2010s, it surged to approximately
280 Gta−1 (Otosaka et al., 2023; Mouginot et al., 2019). This
escalating mass loss can be attributed to two primary pro-
cesses: (1) the change in surface mass balance driven by
enhanced surface melt and (2) calving and submarine melt-
ing of marine-terminating glaciers, commonly referred to as
frontal ablation (King et al., 2020; Choi et al., 2021). In spe-
cific regions and seasons, ice discharge may be responsible
for more than 50 % of the total ice sheet mass loss (Mouginot
et al., 2019; King et al., 2020; Choi et al., 2021; Aschwanden
et al., 2019).

Enhanced calving significantly impacts ice dynamics, of-
ten resulting in ice flow acceleration and subsequent thin-
ning (Bondzio et al., 2017; Cheng et al., 2022; Lippert et al.,
2024). Given that calving is sensitive to climate conditions
(Greene et al., 2024; Wood et al., 2021), it is important to
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understand how future calving rates would impact ice sheet
mass balance and sea-level rise (Choi et al., 2021). Numer-
ous studies have utilized ice sheet numerical models to ex-
plore the applicability of various calving laws to Greenland
and Antarctic ice sheets and identified the set of model pa-
rameters that minimize the misfit between model and obser-
vations (Wilner et al., 2023; Choi et al., 2018). According
to Choi et al. (2018), the von Mises calving law (Morlighem
et al., 2016, VM;) best replicates observed terminus positions
of nine outlet glaciers in Greenland compared to other exist-
ing laws.

Although numerical models can provide reliable solutions
for ice flow when ice extent is kept constant, capturing the
precise impacts of spatiotemporally varying calving rates on
terminus migration and ice flow in numerical models remains
challenging. Additionally, assimilating remote sensing ob-
servations into numerical models, required to infer certain
model parameters, is both complex to implement and com-
putationally intensive (Choi et al., 2023). Furthermore, the
integration of calving as a boundary condition in numerical
models introduces significant complexity since calving di-
rectly alters the ice geometry and model domain during sim-
ulations. Consequently, identifying the optimal calving pa-
rameterizations consistent with observations is difficult and
time-consuming, thereby limiting our ability to project the
future mass balance of ice sheets under various parameter
settings (Choi et al., 2018; Edwards et al., 2021; Morlighem
et al., 2020).

To address the computational demands of numerical mod-
els, various statistical approaches have emerged relying on
faster machine learning models in lieu of ice sheet numerical
models. While traditional numerical models often necessi-
tate using high-performance computing clusters to solve par-
tial differential equations (PDEs) on central processing units
(CPUs), machine learning emulators offer the advantage of
operating on lighter computational resources, leveraging the
parallel processing capabilities of graphic processing units
(GPUs). For instance, Downs et al. (2023) used a Gaus-
sian process (GP) emulator to infer the sensitivity of time-
independent model parameters to the frontal ablation of Hel-
heim Glacier in Southeast Greenland. Although they were
able to identify the best set of calving threshold parameters
in the VM calving law, their GP approach did not account
for spatial relationships or interactions between neighbor-
ing nodes. Additionally, their emulator focused on matching
the observed and modeled terminus positions along a central
flow line rather than the entire glacier system.

Given that ice dynamics and calving are affected by the
glacier geometry and underlying bed topography, it is im-
portant for the emulators to learn the spatial context across
the entire glacier domain. To account for spatial relation-
ships between nodes for emulating ice sheet dynamics, graph
neural networks (GNNs) have emerged as an effective neu-
ral network architecture for handling irregular non-Euclidean
data structures such as molecular structures, point clouds,

social networks, and natural language (Zhang et al., 2019).
GNNs are adaptable to any type of data structure organized
as graphs, comprising nodes (i.e., data points) and edges (i.e.,
the connections between nodes), which make them suitable
to manifest meshes of numerical simulations (Pfaff et al.,
2021). GNNs make predictions by utilizing pairwise mes-
sage passing between nodes, wherein information exchange
occurs, updating individual node features through interac-
tions with connected nodes. Inspired by the resemblance of
the mesh structure in finite-element analysis to a graph struc-
ture, numerous studies have investigated the training of em-
ulators of finite-element numerical simulations using GNNs
(Fu et al., 2023; Shivaditya et al., 2022; Black and Najafi,
2022; Perera et al., 2022; Salehi and Giannacopoulos, 2022;
Maurizi et al., 2022; Jiang and Chen, 2023).

In this study, we investigate whether GNNs can be used
as the backbone architecture for statistical mapping between
input and output variables of finite-element ice sheet model-
ing while embedding the spatial connections between nodes.
GNN emulators take direct advantage of unstructured meshes
of the Ice-sheet and Sea-level System Model (ISSM), al-
lowing flexible spatial resolution and efficient allocation of
computational resources, and can speed up model parame-
ter search. Here, as an illustration, we use GNN emulators to
determine how calving parameterization affects ice dynamics
while maintaining the accuracy and precision of ISSM simu-
lations. Our focus is on Helheim Glacier, chosen as the target
site for training and evaluating our GNN emulators (Fig. 1a).
Helheim Glacier is one of the largest outlet glaciers in Green-
land, and it has been shown that its ice velocity is closely
correlated to the position of its terminus (Cheng et al., 2022).
Despite considerable advancements in observation and mod-
eling techniques over the past decades, the mechanisms gov-
erning Helheim Glacier’s ice front position remain elusive
(Bevan et al., 2015; Miles et al., 2016; Cheng et al., 2022).
A key contributing factor to this knowledge gap is the com-
putational intensity of numerical models incorporating calv-
ing, impeding the fine-tuning of calving parameters to accu-
rately reflect observations. As the main parameter that de-
termines the terminus positions, the temporal variations of
calving parameters and their impacts on calving should be
explored (Downs et al., 2023). In this study, we train GNN
models using simulation data derived from numerical mod-
els and evaluate their fidelity and computational efficiency in
modeling the dynamics and calving front migration of Hel-
heim Glacier. We assess the potential of GNN architectures
as statistical emulators for numerical finite-element ice sheet
models to represent spatial features of ice sheet dynamics and
calving across the entire glacier domain.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a comprehensive review of relevant litera-
ture about calving parameterization in ice sheet models, other
machine-learning emulators employed in ice sheet modeling,
and the use of GNNs as emulators for finite-element mod-
els. In Sect. 3, we describe the training data collected from
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Figure 1. (a) Location of Helheim Glacier, Greenland; (b) ice ve-
locity; (c) bed elevation; and (d) ice thickness near the calving front
of Helheim Glacier in 2007. The background image is the MODIS
true color image from 20 June 2023.

numerical simulations, while Sect. 4 outlines the specifics of
GNN architectures. Section 5 presents the accuracy and com-
putational efficiency of these models in replicating the dy-
namics of Helheim Glacier. In addition, we demonstrate the
utility of GNN emulators in optimizing calving parameteri-
zation to match simulation results with observations. Finally,
we discuss the scientific implications of calving calibration
and the limitations of GNN emulators in Sect. 6.

2 Background

2.1 von Mises calving law

In the VM calving law, the calving rate, c, is assumed to be
proportional to both the tensile stress and the magnitude of
ice velocity, formulated as follows (Morlighem et al., 2016):

c = ||v||
σ̃

σmax
, (1)

where σ̃ is a scalar quantity representing the effective tensile
stress of the ice, σmax is a stress threshold that needs to be
calibrated on a glacier-by-glacier basis, and v is the ice flow
velocity at the ice front. The migration rate of the ice front is

then determined from the calving rate c using the following
equation (Morlighem et al., 2016):

vf = v− (c+ Ṁ)n, (2)

where vf is the ice front migration rate, Ṁ is the melting rate
on the calving front, and n is a unit normal vector pointing
outward from the ice domain. In the ISSM, the numerical ice
sheet model we use in this study, moving boundaries of ice
sheets are represented implicitly using the level set method
(Osher and Sethian, 1988; Bondzio et al., 2016; Morlighem
et al., 2016; Cheng et al., 2024). The level set method defines
a scalar field ϕ(x, t): ϕ is negative in the location of x that
is ice-covered at time t , positive where there is no ice, and
the zero contour of ϕ defines the ice boundary. With a given
initial condition ϕ(x, t0), the level set ϕ is updated by solving
an advection equation using the migration rate vf that

∂ϕ

∂t
+ vf · ∇ϕ = 0. (3)

In VM, σmax is the only parameter that needs to be cal-
ibrated (Morlighem et al., 2016). A lower value of σmax
correlates to weaker ice and, consequently, a larger calving
rate. According to Morlighem et al. (2016), σmax is consis-
tent with the range of ice tensile strength, which is typically
around 1 MPa but may be as low as 0.7 MPa and not exceed
3 MPa. In most of the previous studies, this σmax value is
simply assumed to remain constant over time within a prede-
fined range. However, environmental conditions around the
ice front (e.g., temperature, mélange, sea ice, ocean wave,
tide) can vary over time, potentially influencing this calv-
ing parameter in response and leading to substantial changes
in calving patterns (de Juan et al., 2010; Todd and Christof-
fersen, 2014; Kondo and Sugiyama, 2023; Xie et al., 2019;
Wehrlé et al., 2023). Therefore, fine calibration of σmax is
essential for accurately reproducing observed glacier evolu-
tion.

2.2 Machine learning emulator for ice sheet modeling

Machine learning techniques have been extensively em-
ployed as statistical emulators for numerical ice sheet models
and further for calibration of model parameters. Tarasov et al.
(2012) applied Markov chain Monte Carlo methods to artifi-
cial neural networks (ANNs) for the Bayesian calibration of
model parameters. This approach allows for obtaining pos-
terior distributions for different model parameters given ob-
servational datasets. Similarly, Brinkerhoff et al. (2021) used
an ANN surrogate model to infer the posterior distributions
for parameters that govern the behavior of the sliding law
and the hydrological model. Downs et al. (2023) employed
the GP for the calving parameterization associated with the
VM calving law in Helheim Glacier. Nevertheless, the ANNs
of these previous studies are simple feedforward networks
without spatial embeddings between nodes. Given that ice
dynamics are determined by the topographical features, it is
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essential for the surrogate models to fully capture the interac-
tions between neighboring elements to accurately represent
realistic ice sheet behavior.

In replicating spatial characteristics of glaciers, convo-
lutional neural networks (CNNs) have been predominantly
adopted as the main architectures based on their advantages
in capturing the spatial variations in topographical features of
glaciers (Jouvet et al., 2022; Jouvet and Cordonnier, 2023;
Jouvet, 2023; Verjans and Robel, 2024). For instance, the
CNN of the Instructed Glacier Model (IGM) (Jouvet et al.,
2022) reproduced the ice dynamics from the Parallel Ice
Sheet Model (Winkelmann et al., 2011, PISM) and CfsFlow
models (Jouvet et al., 2008). Jouvet (2023) extended this
CNN emulator to address inversion problems, inferring opti-
mal ice thickness distribution, ice flow velocity, and ice sur-
face elevation to match both a Stokes model and observa-
tional data. Another CNN emulator introduced by Jouvet and
Cordonnier (2023) employed a physics-informed loss func-
tion to minimize the energy associated with ice-flow equa-
tions during training. However, CNNs cannot take full ad-
vantage of finite-element ice sheet models on their native grid
because they rely on regular grids (Zhang et al., 2019). Given
the GNN’s capacity to account for dynamic interactions be-
tween nodes and edges (Satorras et al., 2022), it can be a
promising tool for predicting the dynamic behavior of ice.
Indeed, Koo and Rahnemoonfar (2025) demonstrated the fi-
delity and computational efficiency of a GNN architecture in
emulating a finite-element ice sheet numerical model. This
capability of GNN in preserving the mesh structure from the
numerical models can have significant advantages in accu-
rately describing ice front migration.

2.3 Graph neural networks for finite-element analysis

GNNs have been broadly used to emulate finite-element nu-
merical models due to the similarities between computational
meshes and graphs. Perera et al. (2022) developed a GNN
framework to simulate fracture and stress evolution in brit-
tle materials, training their model with data generated from a
finite-element method fracture solver. Similarly, Shivaditya
et al. (2022) proposed a GNN surrogate model for finite-
element simulations of metal forging processes, demonstrat-
ing superior performance compared to other machine learn-
ing models and achieving a 10-fold reduction in process-
ing time. Salehi and Giannacopoulos (2022) also developed
PhysGNN, a GNN framework tailored for simulating soft tis-
sue deformation, and Maurizi et al. (2022) utilized GNNs to
predict stress, strain, and deformation across various material
systems, including fiber and stratified composites, and lattice
metamaterials. Fu et al. (2023) proposed a boundary-oriented
graph embedding (BOGE) approach within the GNN frame-
work for solving finite-element cantilever beam problems,
incorporating both boundary elements and local neighbor el-
ements. Jiang and Chen (2023) introduced a novel graph at-
tribute representation for triangular meshes in finite-element

von Mises stress problems, effectively capturing geometry
and boundary conditions to mitigate over-smoothing issues
associated with deep GNNs. Black and Najafi (2022) intro-
duced a multi-fidelity GNN for the cantilever beam problem,
leveraging low-fidelity projections to inform high-fidelity
modeling across arbitrary subdomains of subgraphs. How-
ever, despite the prevalence of finite-element analysis in ice
sheet modeling (Larour et al., 2012; dos Santos et al., 2021;
Gagliardini et al., 2013), to the best of our knowledge, GNNs
have yet to be adopted exclusively for modeling calving dy-
namics and calibrating parameters involved.

3 Data

3.1 Ice sheet numerical simulation

To generate training datasets for the GNN emulators, we
conduct transient simulations of ice dynamics and calv-
ing of Helheim Glacier between 2007 and 2020, using
ISSM (Larour et al., 2012). The shelfy-stream approxima-
tion (SSA; MacAyeal, 1989) is used for describing ice flow.
The SSA, which assumes depth-independent horizontal ve-
locity and negligible vertical shear stresses, is appropriate for
fast-flowing glaciers controlled by basal sliding such as the
Helheim Glacier (Cheng et al., 2022; Choi et al., 2018).

The model setup is identical to the one described in Cheng
et al. (2022). A two-dimensional unstructured mesh is con-
structed with a spatial resolution ranging from 100 m in
the fast-flowing ice front to 1500 m in the inland domain,
ultimately comprising 46 434 elements and 23 466 vertices
(nodes). The transient simulations run forward in time with a
time step of 1.825 d (0.005 years), and we output the state
of the model every 10 time steps (∼ 18 d). Consequently,
each transient simulation generates a total of 261 outputs be-
tween 2007 and 2020. Basal friction is calibrated and held
constant using the surface velocities from satellite interfer-
ometry (Mouginot et al., 2017, 2019) (Fig. 1b). Bed topog-
raphy and the initial ice thickness are from BedMachine
Greenland v6 (Morlighem et al., 2017) (Fig. 1c and d). Sur-
face mass balance (SMB) is from the Regional Atmosphere
Model (Tedesco and Fettweis, 2020), and the ocean thermal
forcing is from Wood et al. (2021). The melting rate at the
calving front (i.e., Ṁ in Eq. 2) is parameterized based on Rig-
not et al. (2016). To examine the sensitivity of ice dynamics
to σmax of the VM calving law, we run transient solutions for
9 different σmax values (i.e., 0.70, 0.75, 0.80, 0.85, 0.90, 0.95,
1.00, 1.05, and 1.10 MPa) based on the values proposed by
Choi et al. (2018).

The ISSM simulations provide the solutions of ice veloc-
ity, ice thickness, and a mask of ice-covered region every
10 time steps. We convert the triangular mesh from ISSM
into a data structure that aligns with the input and output re-
quirements of deep learning architectures. Specifically, for
GNN architectures, we convert the meshes into graph nodes
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and edges by extracting adjacency matrices that represent
the connectivity between nodes. In a triangular mesh, each
element consists of three nodes that are interconnected by
edges (Fig. 2). Using the nodes and elements of the mesh en-
sures that the resolution of this graph matches exactly with
the finite-element mesh used in ISSM simulations.

3.2 Observations

To determine the best σmax that aligns with real observations,
we compare the numerical simulation results with remote-
sensing derived terminus positions and ice velocities for
the same periods as the numerical simulations (2007–2020).
First, we use surface ice velocities with a spatial resolution
of 150 m (Mouginot et al., 2017, 2019), which have a pre-
cision better than 20 ma−1 (Mouginot et al., 2017). Second,
we use a time series of calving front positions of Helheim
Glacier from Greene et al. (2024). During the targeted time
frame from 2007 to 2020, we use monthly averaged ice front
positions, yielding a total of 156 distinct ice front positions
for analysis.

4 Method

Ice sheet modeling can be regarded as a node-regression
problem within graph structures, where the output features
of individual nodes are derived from the input features of
nodes. The unstructured meshes of ISSM can be represented
as graph structures, with node connectivity expressed via ad-
jacency matrices. Based on the graph structures of the ISSM
meshes, we develop three GNN architectures: graph convo-
lutional network (GCN), graph attention network (GAT), and
equivariant graph convolutional network (EGCN). Typical
GNN architectures update graph nodes iteratively through
message-passing processes between neighboring nodes, and
the way to achieve this message passing determines the spe-
cific type of GNN architecture. For the undirected graph
G = (V,E) with N nodes ui ∈ V , edges (ui,uj ) ∈ E , and
an adjacency matrix A ∈ RN×N , lth GNN layer receives a
set of node features h(l) = {h(l)1 ,h

(l)
2 , . . .,h

(l)
N },h

(l)
i ∈ R

Fl , as
the input and produces a new set of node features, h(l+1)

=

{h
(l+1)
1 ,h

(l+1)
2 , . . .,h

(l+1)
N },h

(l+1)
i ∈ RFl+1 , for the next l+1th

layer. Fl and Fl+1 are the number of features in each node
at lth layer and l+1 layer, respectively. The GCN, GAT, and
EGCN operate on graph structures but use different message-
passing approaches in updating h(l+1) from h(l). By compar-
ing three representative GNN architectures, we evaluate what
approach is more effective in replicating ice sheet dynamics
and calving from the ISSM simulations.

4.1 Graph convolutional network

First, we employ a GCN proposed by Kipf and Welling
(2017). We design a GCN with one input layer, five graph
convolutional hidden layers, and one output layer (Fig. 2).
The number of hidden layers is determined after conducting
trial and error experiments with several options: we tested
1, 2, 5, and 10 hidden layers, and 5 hidden layers showed
the best accuracy. The graph convolutional hidden layers are
inspired by the localized first-order approximation of spec-
tral graph convolutions on graph-structured data (Kipf and
Welling, 2017). For each graph convolutional layer, the num-
ber of features is set to 128. Similar to the hidden layers, the
number of hidden features was determined from trial and er-
ror with 4 options: 32, 64, 128, and 256. The weights of graph
convolutional layers are updated via the layer-wise propaga-
tion rule as follows:

h
(l+1)
i = σ

 ∑
j∈N (i)

1
cij

W(l)h
(l)
j

 , (4)

where N (i) is the set of neighbors of node i, cij is an
appropriately chosen normalization constant for the edge
(ui,uj ) defined as the product of the node degrees (i.e., cij =√
|N (j)|

√
|N (i)|), and W(l)

∈ RFl+1×Fl . W(l) is a layer-
specific trainable weight matrix (W(l)

∈ RFl+1×Fl ), and σ(·)
is an activation function; we use the Leaky ReLU activation
function with a 0.01 negative slope in this study.

4.2 Graph attention network

Since the original GCN filters merely depend on graph struc-
tures and node connectivity (Eq. 4), a model trained with a
certain graph structure can have limitations in general appli-
cability to different graph structures. The GAT is proposed to
address such shortcomings by adding masked self-attention
layers (Veličković et al., 2018). This architecture assigns dif-
ferent weights to different nodes in a neighborhood by insert-
ing a self-attention mechanism in a hidden layer, which can
allow better generalizability for different ice conditions or to-
pographies. The propagation process in graph attention lay-
ers can be expressed by the following equation (Veličković
et al., 2018):

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W(l)h

(l)
j

 , (5)

where α(l) is the attention score between node i and node j
defined as follows:

α
(l)
ij = softmaxj

(
e
(l)
ij

)
=

exp
(
e
(l)
ij

)
∑
k∈N (i)exp

(
e
(l)
ik

)
e
(l)
ij = a

(
W(l)h

(l)
i ,W

(l)h
(l)
j

)
, (6)
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Figure 2. Schematic workflow of using GNN emulators to predict calving front.

where a : RFl+1 ×RFl+1 → R is a self-attention mechanism
to compute attention coefficient e(l)ij . This attention mech-
anism a is a single-layer feedforward neural network pa-
rameterized by a weight vector a ∈ R2Fl+1 , normalized by
LeakyReLU function afterward. The graph structure is ap-
plied to this attention mechanism by computing e(l)ij for only
nodes j ∈N (i), where N (i) is set of neighbors of node
i. We execute three independent attention mechanisms of
Eq. (5) and average them for the final graph attention layer
(Veličković et al., 2018). Similar to the GCN, the GAT con-
sists of one input layer, five graph attention hidden layers
with 128 features, and one output layer (Fig. 2).

4.3 Equivariant graph convolutional network

Another graph neural network we adopt is EGCN, which is
designed to conserve equivariance to rotations, translations,
reflections, and permutations in a graph structure (Satorras
et al., 2022). Since our emulator is intended to predict ice
front migration, we anticipate that the preservation of equiv-
ariance to rotations and translations on spatial coordinates via
the EGCN structure guarantees sufficient generalizability to
various graph structures of dynamics systems. An equivariant
graph convolutional layer can be expressed by the following
equations:

mij = φe

(
h
(l)
i ,h

(l)
j ,

∣∣∣∣∣∣x(l)i − x(l)j ∣∣∣∣∣∣2,aij) (7)

v
(l+1)
i = φv

(
h
(l)
i

)
v0
i +C

∑
j 6=i

(
x
(l)
i − x

(l)
j

)
φx(mij ) (8)

x
(l+1)
i = x

(l)
i + v

(l+1)
i (9)

mi = x
(l)
i +C

∑
j 6=i

mij (10)

h
(l+1)
i = φh

(
h
(l)
i ,mi

)
, (11)

where aij is the edge attributes, xi and xj are the 2D co-
ordinate embeddings for node i and j , respectively, and C
is a constant for normalization computed as 1/|N (i)|. For
the edge attributes, we use three attributes that can be ex-
tracted from the connecting nodes: distance, surface slope,
and base slope. φe, φx , φv , and φh are the edge, position, ve-
locity, and node operations, respectively, which are approxi-
mated by single-layer neural networks with 128 hidden fea-
tures. Herein, the x and y components of ice velocities are
represented as velocity embeddings (vi), which induce the
displacement of coordinate embeddings (xi) (Eq. 9), and ice
thickness and stress represented as hidden embeddings (h(l)i ).
More details about the EGCN architecture are described in
Satorras et al. (2022).

4.4 Model training

From the ice sheet simulation results, we collect 2349 graphs
(261 sets of results per transient simulations×9σmax values).
Each graph consists of 23 466 nodes and 139 798 edges. Indi-
vidual nodes have numerical input and output features from
the ISSM simulations and are connected to each other via
edges, which are determined by the node connections of the
finite elements. The input features include 7 variables that
determine the ice sheet dynamic conditions: bed elevation,
basal friction, ice thickness at time t − 1, ice mask at time
t − 1, surface mass balance at time t − 1, and x and y com-
ponents of ice velocity at time t − 1. The output includes
4 variables that represent ice dynamics at time t : the two
components of ice velocity, ice thickness, and tensile stress
σ̃ (Fig. 2). Our emulators are trained to establish a statis-
tical mapping between input and output features: how the
input variables at time t − 1 change the output variables at
time t in numerical modeling. Previous machine learning
studies attempted similar types of mapping via various deep
learning architecture (Brinkerhoff et al., 2021; Downs et al.,
2023; Tarasov et al., 2012; Jouvet and Cordonnier, 2023;
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Jouvet et al., 2022; Jouvet, 2023). All input and output fea-
tures are normalized to the range [−1, 1] for stable learning
using the nominal maximum and minimum values of these
variables. After the GNNs predict ice velocity, ice thickness,
and tensile stress σ̃ , the ice mask at t is computed from these
outputs using a given σmax using Eqs. (1)–(3) (Fig. 2).

All 2349 graph structures are divided into training and
test datasets based on the σmax values to assess whether our
emulators can be generalized for different σmax values. We
conduct four sets of sensitivity tests to evaluate whether the
emulator can be reliably generalized to unseen σmax values
(Table 1). In set A, the training dataset consists of samples
with σmax values of 0.75, 0.90, and 1.05 MPa, while the re-
maining σmax values are used for testing. This set evaluates
whether the model can represent the full range of σmax val-
ues when trained with evenly sampled σmax values. In set B,
the training dataset includes low σmax values (0.70, 0.75, and
0.80 MPa) to test whether the model can generalize to high-
value samples when trained only with low-value samples. In
set C, we use medium σmax values (0.85, 0.90, and 0.95 MPa)
as the training dataset to check whether the model can rep-
resent high- or low-value samples when trained only with
medium-value samples. Finally, set D contains only high
σmax values (1.00, 1.05, and 1.10 MPa) to check the model
performance when extrapolating to lower values. For each
sensitivity test, the training and test datasets contain 783 and
1566 graph structures, respectively. The model is optimized
using the Adam stochastic gradient descent algorithm with
the mean square error (MSE) loss function, over 500 epochs,
and a learning rate of 0.001.

4.5 Model evaluation

We evaluate the ability of our emulators to reproduce ice ve-
locity, ice thickness, and calving front migration by compar-
ing them to ISSM simulation results. For this evaluation, we
calculate two metrics: (i) root mean square error (RMSE) and
(ii) binary calving front error (BE); RMSE is used to evalu-
ate ice velocity and ice thickness predictions, and BE is used
to evaluate the calving front delineation. These metrics are
calculated using the following equations:

RMSE(ŷ,y)=

√√√√ 1
N

N∑
i=1
(ŷi − yi)

2 (12)

BE(ŷ,y)= 1−
1
N

N∑
i=1

I(ŷi = yi), (13)

where ŷ denotes predicted values, y denotes true values,N is
the number of data points, and I(ŷi = yi) denotes the indica-
tion function that returns 1 if ŷi = yi and returns 0 if ŷi 6= yi .
RMSE represents the difference between the prediction and
reference; a lower RMSE corresponds to better fidelity. In
calculating BE, we convert the ice mask into binary values,
representing ice nodes as 1 and non-ice nodes as 0. There-

fore, BE is a metric indicating the proportion of incorrectly
predicted nodes relative to the total number of nodes; a lower
BE corresponds to better fidelity.

5 Results

5.1 Model fidelity

Our GNN models are trained with four different training/test
sets, as outlined in Table 1. The training and test errors of
ice velocity, ice thickness, and calving front position for the
GNN emulators compared to ISSM simulation results are
shown in Fig. 3. When the GNN emulators are trained with
even-value samples (set A), the training and test errors are
almost the same for ice velocity, ice thickness, and calving
front. Indeed, t test results confirm no significant difference
between training and test errors for all models (Table A1).
This result indicates that the emulators trained with even-
value samples can effectively represent the full range of σmax
values.

In the case of low-value samples (set B), the test error is
occasionally even lower than the training error, particularly
in ice velocity prediction, which suggests that the emulators
trained only with low-value samples can represent high σmax
value cases with < 10 % of uncertainty in most cases (Ta-
ble A1). Although the test errors are slightly greater than
training errors in sets C and D, their differences are primarily
within a 5 % uncertainty range for ice velocity and ice thick-
ness and within a 20 % uncertainty range for the calving front
(Table A1). The results of sets C and D demonstrate that the
GNN emulators trained with medium or high σmax values can
generally have < 10%–20 % of uncertainty in representing
the out-of-sample σmax values. Overall, the sensitivity tests
with four different sets show that GNN emulators trained
with selected σmax values can be generalizable for all other
σmax values with < 10%–20 % of uncertainties even if those
σmax values are not included in the training dataset. While the
GP-based emulator by Downs et al. (2023) was limited to in-
terpolating within the range of training samples, our GNN
emulators can extrapolate to unseen σmax values. This capa-
bility in extrapolation is particularly valuable for optimizing
calving parameterization beyond the scope of training σmax
values.

Among the three GNN architectures, the EGCN exhibits
notably lower RMSE values: ∼ 50–60 ma−1 of ice velocity
RMSE and ∼ 30 m of ice thickness RMSE (Fig. 3). That is,
the EGCN reduces ice velocity RMSE by 40–150 ma−1 and
ice thickness RMSE by 15–20 m compared to the other GNN
architectures (see Table A2 for statistical significance). On
the other hand, the EGCN and GAT yield similar ice front
predictions with BE ranging from 0.60 % to 0.75 %. The rel-
atively lower errors achieved by the EGCN support that its
equivariance architecture is beneficial in predicting ice dy-
namics. As mentioned in Sect. 4, the GCN, GAT, and EGCN
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Table 1. Division of training/test σmax in four different sets.

Set Training σmax (MPa) Test σmax (MPa) Note

A [0.75, 0.90, 1.05] [0.70, 0.80, 0.85, 0.95, 1.00, 1.10] Even-value samples
B [0.70, 0.75, 0.80] [0.85, 0.90, 0.95, 1.00, 1.05, 1.10] Low-value samples
C [0.85, 0.90, 0.95] [0.70, 0.75, 0.80, 1.00, 1.05, 1.10] Medium-value samples
D [1.00, 1.05, 1.10] [0.70, 0.75, 0.80, 0.85, 0.90, 0.95] High-value samples

Figure 3. (a) RMSE of ice velocity, (b) RMSE of ice thickness, and (c) binary calving front error (BE) for four different sets. For each set,
nine different σmax datasets are divided into training (three σmax values) and test (six σmax values) datasets as described in Table 1. The
circle markers indicate the median errors from training datasets, and the crossing markers indicate the median errors from test datasets. The
shaded areas indicate the interquartile ranges (i.e., 25 % quantile to 75 % quantile) of errors.

have distinct characteristics in message-passing approaches:
the GCN simply uses the adjacency status between neigh-
boring nodes to determine the weights during the propaga-
tion process (Eq. 4); the GAT uses additional self-attention
mechanisms to evaluate the relative importance of neighbor-
ing nodes (Eq. 6); the EGCN uses the message passing from
all nodes to preserve the equivariance of the entire graph
(Eqs. 7–9). We conjecture that the equivariance architecture
of the EGCN contributes significantly to the improvement of
model fidelity.

Figures 4 and 5 show the maps of ice velocity and thick-
ness on two σmax test cases of 0.70 and 1.10 MPa predicted
by the GNN emulators trained with the training set A. Over-
all, all GNN emulators replicate the spatial and temporal pat-
terns of ice velocity and thickness successfully. Addition-
ally, they reproduce the trend of ice front retreat at lower
σmax and advance at higher σmax. In terms of ice veloc-
ity (Fig. 4), the EGCN shows the lowest errors of approx-
imately < 100 ma−1 across the glacier domain, followed
by GAT and GCN. In terms of ice thickness (Fig. 5), the
EGCN generally shows an average RMSE< 40 m across the
glacier domain, but the GCN and GAT have higher RMSEs
of around > 50 m in some areas.

5.2 Computational time

The most significant advantage of GNN emulators is their
ability to reduce this computation time by leveraging GPUs
while maintaining finite element structures, which is not

completely available via other non-graph neural network ar-
chitectures (Koo and Rahnemoonfar, 2025). When we run
the ISSM numerical model, it takes 948 s (∼ 15.8 min) on
average to complete one 13 year transient simulation for a
given σmax value. This computation time of ISSM reflects
the total elapsed time on a single node of the Texas Ad-
vanced Computing Center (TACC) Frontera supercomputing
cluster, which is equipped with 56 cores of Intel 8280 Cas-
cade Lake CPUs (192 GB memory). To evaluate the com-
putational efficiency of the GNN emulators, we also record
the time required to generate a single transient simulation
for a given σmax value with our GNN emulators (Table 2).
The GNN computations are performed on a CPU (Intel(R)
Core(TM) i7-11700F; 32 GB memory) and a GPU (NVIDIA
GeForce RTX 3070; 24 GB memory) within the same desk-
top (Lenovo Legion T5 26IOB6). We observe a dramatic
speed-up with GPU-based deep learning emulators, achiev-
ing computation times 30–34 times faster than ISSM simula-
tions. The GCN shows the highest speed-up, around 34 times
faster than ISSM. Among the three GNN architectures, the
GAT shows the longest computational time due to the com-
plexity of its attention mechanisms. The EGCN also requires
a longer computational time than the GCN because it oper-
ates on all graph nodes to preserve the equivariance in the
entire graph, whereas the GCN operates only on the adja-
cent nodes. It is also noteworthy that using GPUs reduces the
computation time of deep learning emulators by up to ∼ 4
times compared to using CPUs.
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Figure 4. Maps of ISSM-simulated ice velocity and difference in ice velocity between GNN emulators and ISSM simulations (GCN, GAT,
and EGCN from top to bottom) for 0.70 and 1.10 MPa test σmax values of set A.

Table 2. Computation time for running one 13-year transient simulation from ISSM and GNN emulators and upstreaming computational
time for training deep learning models. The shortest elapsed time and training time are highlighted in bold.

Model Averaged elapsed time Training time Number of
for one transient run learnable

(speed-up compared to ISSM) parameters

CPU GPU

GCN 45 s (×21.0) 28 s (×33.8) 617 s (10.3 min) 67 588
GAT 135 s (×7.0) 31 s (×30.6) 1315 s (21.9 min) 205 572
EGCN 65 s (×14.6) 29 s (×32.7) 814 s (13.6 min) 104 066

This experiment is also promising because, while ISSM
computation is performed on a supercomputer, GNNs can be
run on a personal desktop. By leveraging GPU-based GNN
emulators, computationally intensive simulations of ice dy-
namics and calving can be quickly reproduced on personal
desktops without the need for high-performance computing
systems. We expect that these types of emulators will facili-
tate the efficient parameterization of different ice conditions,
ice properties, and external climate forcings.

However, although GNNs can successfully replicate the
finite-element structure of ISSM simulations and reduce the
computational time by leveraging GPUs, it is important to
consider the upstream costs for training deep learning em-
ulators to assess their whole-process efficiencies. Table 2
presents the number of learnable parameters and model train-
ing time for the GCN, GAT, and EGCN. This training time
is recorded from the 500-epoch training of each model on a
multiple-GPU system equipped with 8 NVIDIA RTX A5000
GPUs. The GCN takes the least training time, followed by
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Figure 5. Maps of ISSM-simulated ice thickness and difference in ice thickness between GNN emulators and ISSM simulations (GCN, GAT,
and EGCN from top to bottom) for 0.70 and 1.10 MPa test σmax values of set A.

EGCN and GAT. Herein, these training times are based on
the training datasets of set A; however, the training times of
four different sets (Table 1) are similar to each other because
they have the same number of training samples. It should also
be noted that collecting various ISSM numerical simulations
with various σmax values is required to train GNN emulators:
in our case, approximately 8500 s (∼ 2 h 22 min) are required
to collect all 9 simulation results with different σmax values.
Nevertheless, given that the emulators show sufficient perfor-
mances only with 3 training σmax values, fewer simulations
would be sufficient for training. Furthermore, we emphasize
that these GNN emulators can be efficiently applied to this
target glacier with a short implementation time once they are
trained, which can accelerate the search for optimal parame-
terization settings that align the numerical model with obser-
vations.

5.3 Comparison with real observations

We use the EGCN emulator, trained with set A training sam-
ples, to determine the appropriate σmax values that accu-
rately capture the migration of Helheim’s calving front, as

the EGCN shows the best performances in predicting ice
velocity, ice thickness, and calving front positions (Fig. 3).
The satellite-derived ice velocity and ice front observations
at each time step are used as input for the EGCN emula-
tor to predict the ice front at the next time step. Then, we
identify the optimal σmax value for each time step that min-
imizes BE of ice front location between prediction and ob-
servation (Eq. 13). Given that previous studies (Morlighem
et al., 2016; Wilner et al., 2023; Choi et al., 2018) suggest
that σmax should fall between 0.7 to 1.1 MPa, we vary σmax
incrementally by 0.01 MPa within this range and determine
the σmax value with the lowest BE.

Figure 6 shows the temporal variation of optimal σmax de-
rived from the EGCN spanning from 2007 to 2020. Inter-
estingly, there is a significant temporal correlation between
the optimal σmax and the terminus positions with coeffi-
cient > 0.5 (p value < 0.01). This result indicates that σmax
is an important parameter that determines the calving front
migration and should be tuned carefully in calving mod-
els. However, we should also note that the temporal vari-
ations of optimal σmax and observed calving front do not
agree well during the summers of 2017 and 2019. Given that
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these two periods coincide with prolonged plume–polynya
events lasting more than 20 d in the Helheim Glacier (Melton
et al., 2022), we conjecture that buoyant subglacial discharge
plumes may have influenced the calving mechanisms during
these periods, introducing additional uncertainties to the VM
calving law (Everett et al., 2021).

Year-to-year migrations of ice front from observations and
numerical models with different σmax are shown in Fig. 7.
It should be noted that a temporarily constant σmax does not
represent the observed calving front migration well. If the
σmax value is set too high (> 0.8 MPa), the calving front does
not shift or slightly advances after 2017; on the contrary, if
σmax is set too low (≤ 0.8 MPa), the calving front retreats
too much such that the modeling results no longer match the
observations. On the other hand, the temporally varying op-
timal σmax reproduces the long-term trend of calving front
movement along the flow line 1 better than constant σmax
settings, although the short-term variations do not perfectly
match (Fig. 8a). However, we should also note that the calv-
ing front migration of flow line 2 is not as well predicted as
flow line 1 (Fig. 8b). Although some small advance or retreat
along flow line 2 is predicted by numerical simulations with
the optimal σmax settings, the calving front remains almost
the same for 13 years of simulation. This difference between
flow line 1 and 2 suggests the need for spatially varying σmax
parameterization in addition to the temporally varying set-
tings, which is discussed in detail in Sect. 6.

6 Discussion

In this section, we discuss the scientific implications of σmax
variation and the significant role of GNN emulators in im-
proving the physical modeling of glacier calving. Our re-
sults reveal that the fine-tuning of temporally varying σmax
leads to better performance in calving prediction compared
to traditionally used constant σmax parameterization. As a pa-
rameter indicating how difficult it is for calving to happen,
a greater σmax means a lower rate of calving, and a lower
σmax means a higher rate of calving. Previous studies have
shown that the physical condition of mélange around the
ice front, such as ice thickness and concentration, changes
the frequency of calving events; a weaker or disappearing
mélange area leads to an increase in calving events, which
corresponds to lower σmax (Wehrlé et al., 2023; Xie et al.,
2019; Meng et al., 2025). Although this study is focused on
finding optimal σmax values using GNNs, exploring the link-
age between optimal σmax and mélange conditions can con-
tribute to the accurate parameterization of σmax for calving
models. Additionally, given that mélange and sea ice condi-
tions can vary along the ice front, assigning spatially varying
σmax can address the discrepancies in calving front migration
for two flow lines shown in Figs. 7 and 8. To set spatially
varying σmax, we can consider finding the best σmax for mul-
tiple flow lines and interpolate these values at the ice front. It

would also be valuable to investigate how σmax interacts with
other environmental factors, including tidal forcing and deep
water circulation, which are known as significant drivers for
calving events (O’Neel et al., 2003; Bassis and Jacobs, 2013;
Slater and Straneo, 2022). Consequently, finding the optimal
calving parameterization setting and connecting it to external
environmental drivers will contribute to the accurate model-
ing of glacier mass loss and sea level rise beyond the conven-
tional constant calving calibration.

Given the scientific implication of temporally varying
σmax, the significance of this study lies in the (i) fidelity and
(ii) computational efficiency of using GNN architectures, es-
pecially EGCN, in emulating numerical ice sheet models op-
erating on unstructured meshes to find the optimal calving
parameterization. By applying GNNs directly on raw un-
structured meshes, we can keep high resolution around the
fast ice area to delineate the calving front accurately. In par-
ticular, EGCN shows the best fidelity in predicting ice thick-
ness due to its equivariance concept throughout the graph
structures. Moreover, the use of GNN emulators results in
a dramatic increase in computational efficiency, with speeds
30–34 times faster than the ISSM simulations. This speed-up
allows us to find the temporally varying optimal σmax val-
ues quickly. Given that running numerical simulations every
time to determine the optimal σmax setting is extremely time-
consuming, our fast GNN emulators reduce the workload as-
sociated with calving calibration.

Besides these advantages of GNN architectures, we em-
phasize that GNN emulators have significant potential for
further improvement, particularly through integration with
various architectures, including recurrent neural networks
(RNNs) (Wu et al., 2021). For example, while our GNN
emulator only implements a mapping between a previous
time step (t − 1) to the next time step (t), embedding recur-
rent units into the GNN architecture can make it possible to
find the sequential relationships between ice sheet dynamics
and calving parameters (i.e., mapping between multiple time
steps). This recurrent GNN architecture will be able to pre-
dict how the historical context of calving parameters affects
ice dynamics and ice front migration.

However, it is also worth noting several limitations of
our approach. Firstly, despite the computational efficiency of
GNN emulators, they should be trained using numerical sim-
ulations. Since the model performance is highly dependent
on the quality of training datasets, simulation data should
be collected carefully with appropriate parameters. Second,
the collection of training datasets from various climatolog-
ical scenarios can be helpful for better generalizability and
reliability of emulators to predict future glacier behaviors;
however, this process can be exceptionally time-consuming.
This generalizability issue can also be associated with the ap-
plicability of our GNN emulators for other glaciers beyond
Helheim Glacier. To assess the fidelity and transferability of
our GNN emulators trained on Helheim Glacier, we apply
them to the Pine Island Glacier (PIG), Antarctica, which has
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Figure 6. Temporal variations of optimal σmax derived by EGCN (red dashed line) and the temporal movement of terminus of flow line 1 (a)
and flow line 2 (b) in Fig. 1b.

Figure 7. Annual movement of ice front observed by satellite imagery and modeled by ISSM with different σmax parameterizations: optimal
σmax values from EGCN and constant σmax values (0.7, 0.8, 0.9, and 1.0 MPa).

different ice velocity and thickness distributions. The ice ve-
locity RMSE in PIG ranges from 200 to 400 ma−1 (2–4 times
greater RMSE than Helheim Glacier), and the ice thickness
RMSE ranges from 120 to 200 m (5–10 times greater RMSE
than Helheim Glacier) (Figs. S1, S2, and Table S1 in the Sup-
plement). These results suggest the importance of training
GNN emulators on datasets encompassing a diverse range

of ice velocity and thickness distributions to ensure broad
generalizability and applicability across different glacier set-
tings. Finally, although we employ the VM calving law to de-
termine calving front migration, it is important to recognize
that calving mechanisms are not yet fully understood and
may be more complex than those represented by the VM law.
While the VM method has been validated for many glaciers
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Figure 8. Movement of ice front location for (a) flow line 1 and (b) flow line 2 predicted by numerical models with different σmax parame-
terizations; optimal σmax values from EGCN and constant σmax values (0.7, 0.8, 0.9, 1.0, and 1.1 MPa). The observed ice front movement is
drawn as a black solid line.

in Greenland and Antarctica (Choi et al., 2018; Wilner et al.,
2023), detailed calving mechanisms remain elusive. Thus,
although our GNN emulators can provide valuable insights
into how to select appropriate σmax for VM calving law, they
rely on our current imperfect physical understanding of calv-
ing.

7 Conclusions

This study develops three graph neural networks – GCN,
GAT, and EGCN – as surrogate models to reproduce finite-
element ice dynamics and calving retrieved from the ISSM.
After training these GNNs with 13-year transient simulations
of Helheim Glacier, they demonstrate significant spatiotem-
poral agreement with ISSM simulations in predicting ice ve-
locity, ice thickness, and ice front location. The GNN emu-
lators successfully reproduce the retreat of the ice front for
a lower calving stress threshold σmax, as well as the stable
condition of the ice front for a higher σmax. Additionally,
the GNN emulators show only < 10%–20 % of uncertain-
ties in predicting out-of-sample σmax values, implying a bet-
ter capability in extrapolation and generalizability than pre-
vious statistical emulators. Among the three GNN architec-
tures, the EGCN shows the best robustness in the prediction
of ice thickness and velocity by preserving the equivariance
of graph structures. By leveraging 30–34 times faster compu-
tational time of the GPU-based GNN emulators compared to
numerical simulations, we efficiently find temporally vary-
ing optimal σmax parameterization for the von Mises calving
law. By applying satellite-derived observations to the EGCN,
we find that the temporal variations of optimal σmax have

a significant correlation with the retreat and advance of the
calving front from 2007 to 2020. Additionally, the numerical
simulations based on the fine-tuned σmax calibration show
a better agreement with observations compared to conven-
tional constant σmax setting. Therefore, this result highlights
the importance of setting σmax values appropriately to im-
prove the reliability of numerical models. As the first attempt
to use GNNs for calibrating calving parameters, GNN emu-
lators can further contribute to improving the prediction ac-
curacy of ice sheet mass loss and resulting sea level rise.
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Appendix A: T tests for training and test datasets

We conduct statistical t tests to examine (i) whether test error
is significantly different from training error (Table A1) and
(ii) whether a certain GNN architecture shows significantly
better performance than others (Table A2).

Table A1. Reduction in test error relative to training error in percentage (%) for each training/test set and GNN emulator. The positive
values mean lower error in test datasets than in training datasets. If the mean difference is not statistically significant (p value > 0.01; i.e.,
statistically they have the same mean), we highlight it in bold.

Set Ice velocity RMSE Ice thickness RMSE BE

GCN GAT EGCN GCN GAT EGCN GCN GAT EGCN

A 0.2 −0.2 0.1 0.0 −0.1 0.1 2.9 0.0 0.0
B 7.8 4.9 7.0 −0.8 −0.4 3.8 −10.7 −22.7 −7.1
C −0.5 −0.8 −2.9 −0.4 −0.2 −1.2 −11.8 −15.1 −6.7
D −1.3 −2.3 −24.3 −1.7 −0.5 −2.5 −12.5 −16.7 −17.2

Table A2. Performance improvement by GAT and EGCN relative to GCN (i.e., error reduction relative to GCN error) in percentage (%).
The positive values mean a better performance by GAT or EGCN compared to GCN. If the mean difference between the two models is not
statistically significant (p value > 0.01; i.e., statistically they have the same mean), we highlight it in bold.

Set Ice velocity Ice thickness Calving front

GAT EGCN GAT EGCN GAT EGCN

A 24.9 78.9 −2.7 50.3 11.8 11.8
B 33.3 77.7 4.8 51.4 12.9 3.2
C 32.3 80.4 −2.2 46.5 0.0 15.8
D 32.1 77.7 4.3 46.1 2.8 5.5
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