Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5045-2024
https://doi.org/10.5194/tc-18-5045-2024
Research article
 | Highlight paper
 | 
15 Nov 2024
Research article | Highlight paper |  | 15 Nov 2024

Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations

Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (09 Sep 2024) by Marie Dumont
AR by Harry Zekollari on behalf of the Authors (13 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (19 Sep 2024) by Marie Dumont
AR by Harry Zekollari on behalf of the Authors (27 Sep 2024)  Manuscript 
Download
Co-editor-in-chief
This study brings together an impressive amount of data to come up with an updated estimate of global glacier loss until the year 2100. This is an important result in a climate change context, and one of a global dimension.
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.