Articles | Volume 18, issue 10
https://doi.org/10.5194/tc-18-4831-2024
https://doi.org/10.5194/tc-18-4831-2024
Research article
 | 
29 Oct 2024
Research article |  | 29 Oct 2024

How does a change in climate variability impact the Greenland ice sheet surface mass balance?

Tobias Zolles and Andreas Born

Related authors

Sources of uncertainty in Greenland surface mass balance in the 21st century
Katharina M. Holube, Tobias Zolles, and Andreas Born
The Cryosphere, 16, 315–331, https://doi.org/10.5194/tc-16-315-2022,https://doi.org/10.5194/tc-16-315-2022, 2022
Short summary
Sensitivity of the Greenland surface mass and energy balance to uncertainties in key model parameters
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021,https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020,https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019,https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Climate Interactions
A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022,https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021,https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020,https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts
Peter J. Irvine, David W. Keith, and John Moore
The Cryosphere, 12, 2501–2513, https://doi.org/10.5194/tc-12-2501-2018,https://doi.org/10.5194/tc-12-2501-2018, 2018
Short summary
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018,https://doi.org/10.5194/tc-12-1499-2018, 2018

Cited articles

Banderas, R., Alvarez-Solas, J., Robinson, A., and Montoya, M.: A new approach for simulating the paleo-evolution of the Northern Hemisphere ice sheets, Geosci. Model Dev., 11, 2299–2314, https://doi.org/10.5194/gmd-11-2299-2018, 2018. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea-level over the next millennium, Sci. Adv., eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive, version 2.0, ERA Report Series, 23 pp., ECMWF, Shinfield Park, Reading, 2011. a
Beyer, R., Krapp, M., and Manica, A.: An empirical evaluation of bias correction methods for palaeoclimate simulations, Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, 2020. a
Download
Short summary
The Greenland ice sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget; this increases our confidence in projections and reconstructions. Basing the simulations on proxies, e.g., temperature, results in overestimates of the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.