Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3471-2024
https://doi.org/10.5194/tc-18-3471-2024
Research article
 | 
07 Aug 2024
Research article |  | 07 Aug 2024

The AutoICE Challenge

Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner

Related authors

Airborne Gravimetry with Quantum Technology: Observations from Iceland and Greenland
Tim Enzlberger Jensen, Bjørnar Dale, Andreas Stokholm, René Forsberg, Alexandre Bresson, Nassim Zahzam, Alexis Bonnin, and Yannick Bidel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-511,https://doi.org/10.5194/essd-2024-511, 2024
Preprint under review for ESSD
Short summary
AI4SeaIce: Task Separation and Multistage Inference CNNs for Automatic Sea Ice Concentration Charting
Andreas Stokholm, Andrzej Kucik, Nicolas Longépé, and Sine Munk Hvidegaard
EGUsphere, https://doi.org/10.5194/egusphere-2023-976,https://doi.org/10.5194/egusphere-2023-976, 2023
Preprint archived
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024,https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary

Cited articles

Baldwin, S.: Compute Canada: Advancing Computational Research, J. Phys. Conf. Ser. 341, 012001, https://doi.org/10.1088/1742-6596/341/1/012001, 2012. a
Bekkers, E., Francois, J. F., and RojasRomagosa, H.: Melting ice Caps and the Economic Impact of Opening the Northern Sea Route, The Economic Journal, 128, 1095–1127, 2017. a
Boulze, H., Korosov, A., and Brajard, J.: Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks, Remote Sens., 12, 2165, https://doi.org/10.3390/rs12132165, 2020. a
Boutin, G., Williams, T., Rampal, P., Olason, E., and Lique, C.: Impact of wave-induced sea ice fragmentation on sea ice dynamics in the MIZ, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8657, https://doi.org/10.5194/egusphere-egu2020-8657, 2020. a
Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: AI4Arctic Sea Ice Challenge Dataset, DTU [data set], https://doi.org/10.11583/DTU.c.6244065.v2, 2022a. a, b, c, d
Download
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.