Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2381-2024
https://doi.org/10.5194/tc-18-2381-2024
Research article
 | 
14 May 2024
Research article |  | 14 May 2024

Multivariate state and parameter estimation with data assimilation applied to sea-ice models using a Maxwell elasto-brittle rheology

Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau

Related authors

Marine data assimilation in the UK: the past, the present and the vision for the future
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737,https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.0
Yumeng Chen, Lars Nerger, and Amos S. Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-1078,https://doi.org/10.5194/egusphere-2024-1078, 2024
Short summary
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023,https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023,https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023,https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Rheology
On the sensitivity of sea ice deformation statistics to plastic damage
Antoine Savard and Bruno Tremblay
The Cryosphere, 18, 2017–2034, https://doi.org/10.5194/tc-18-2017-2024,https://doi.org/10.5194/tc-18-2017-2024, 2024
Short summary
Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021,https://doi.org/10.5194/tc-15-2873-2021, 2021
Short summary
Behavior of saline ice under cyclic flexural loading
Andrii Murdza, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2415–2428, https://doi.org/10.5194/tc-15-2415-2021,https://doi.org/10.5194/tc-15-2415-2021, 2021
Short summary
Parameter optimization in sea ice models with elastic–viscoplastic rheology
Gleb Panteleev, Max Yaremchuk, Jacob N. Stroh, Oceana P. Francis, and Richard Allard
The Cryosphere, 14, 4427–4451, https://doi.org/10.5194/tc-14-4427-2020,https://doi.org/10.5194/tc-14-4427-2020, 2020
Short summary
Landfast sea ice material properties derived from ice bridge simulations using the Maxwell elasto-brittle rheology
Mathieu Plante, Bruno Tremblay, Martin Losch, and Jean-François Lemieux
The Cryosphere, 14, 2137–2157, https://doi.org/10.5194/tc-14-2137-2020,https://doi.org/10.5194/tc-14-2137-2020, 2020
Short summary

Cited articles

Aksoy, A., Zhang, F., and Nielsen-Gammon, J.: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model, Mon. Weather Rev., 134, 2951–2969, https://doi.org/10.1175/MWR3224.1, 2006. a
Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM, Philadelphia, ISBN 978-1-611974-53-9, https://doi.org/10.1137/1.9781611974546, 2016. a
Aydoğdu, A., Carrassi, A., Guider, C. T., Jones, C. K. R. T., and Rampal, P.: Data assimilation using adaptive, non-conservative, moving mesh models, Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, 2019. a
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017. a
Bertino, L. and Holland, M. M.: Coupled ice-ocean modeling and predictions, J. Marine Res., 75, 839–875, 2017. a
Download
Short summary
We explore multivariate state and parameter estimation using a data assimilation approach through idealised simulations in a dynamics-only sea-ice model based on novel rheology. We identify various potential issues that can arise in complex operational sea-ice models when model parameters are estimated. Even though further investigation will be needed for such complex sea-ice models, we show possibilities of improving the observed and the unobserved model state forecast and parameter accuracy.